A Surface with q = 2 and Canonical Map of Degree 16

CARLOS RITO

ABSTRACT. We construct a surface with irregularity q = 2, geometric genus $p_g = 3$, self-intersection of the canonical divisor $K^2 = 16$, and canonical map of degree 16.

1. Introduction

Let *S* be a smooth minimal surface of general type. Denote by $\phi : S \longrightarrow \mathbb{P}^{p_g-1}$ the canonical map, and let $d := \deg(\phi)$. The following Beauville's result is well known.

THEOREM 1 [Be]. If the canonical image $\Sigma := \phi(S)$ is a surface, then either:

(i) p_g(Σ) = 0, or
(ii) Σ is a canonical surface (in particular, p_g(Σ) = p_g(S)).
Moreover, in case (i) d ≤ 36, and in case (ii) d ≤ 9.

Beauville has also constructed families of examples with $\chi(\mathcal{O}_S)$ arbitrarily large for d = 2, 4, 6, 8 and $p_g(\Sigma) = 0$. Despite being a classical problem, for d > 8 the number of known examples drops drastically: only Tan's example [Ta, §5] with d = 9, the author's [Ri] example with d = 12, and Persson's example [Pe] with d = 16 are known. There is a recent preprint of Sai-Kee Yeung [Ye] claiming that the case d = 36 does occur. Du and Gao [DuGa] show that if the canonical map is an Abelian cover of \mathbb{P}^2 , then the examples mentioned with d = 9 and d = 16are the only possibilities for d > 8. These surfaces are regular, so for irregular surfaces, all known examples satisfy $d \le 8$. We get from Beauville's proof that lower bounds hold for irregular surfaces. In particular,

$$q = 2 \implies d \le 18.$$

In this note, we construct an example with q = 2 and d = 16. The idea of the construction is the following. We start with a double plane with geometric genus $p_g = 3$, irregularity q = 0, self-intersection of the canonical divisor $K^2 = 2$, and singular set the union of 10 points of type A₁ (nodes) and 8 points of type A₃ (standard notation, the resolution of a singularity of type A_n is a chain of (-2)-curves C_1, \ldots, C_n such that $C_iC_{i+1} = 1$ and $C_iC_j = 0$ for $j \neq i \pm 1$). Then we take a double covering ramified over the points of type A₃ and obtain a surface with $p_g = 3$, q = 0 and $K^2 = 4$ with 28 nodes. A double covering ramified over 16 of these 28 nodes gives a surface with $p_g = 3$, q = 0 and $K^2 = 8$ with 24 nodes (which is a \mathbb{Z}_2^3 -covering of \mathbb{P}^2). Finally, there is a double covering ramified

Received August 25, 2015. Revision received December 13, 2015.