Characterizing Linear Groups in Terms of Growth Properties

KHALID BOU-RABEE & D. B. MCREYNOLDS

ABSTRACT. Residual finiteness growth measures how well approximated a group is by its finite quotients. We prove that some related growth functions characterize linearity for a class of groups including all hyperbolic groups.

1. Introduction

Given a finitely generated, residually finite group Γ and a nontrivial $\gamma \in \Gamma$, we consider three functions that measure the difficulty of verifying that γ is non-trivial through homomorphisms to finite groups. The first function $D_{\Gamma}(\gamma)$ is the minimum |Q|, over all finite groups Q, such that there exists a homomorphism $\phi \colon \Gamma \to Q$ with $\phi(\gamma) \neq 1$. This function was introduced in [Bou10]. In this paper, we consider two variations of D_{Γ} obtained by restricting the class of groups Q. We define $L_{\Gamma}(\gamma)$ to be the minimum $|GL(n, \mathbf{F}_q)|$, over all $n \in \mathbf{N}$ and finite fields \mathbf{F}_q , such that there exists a homomorphism $\phi \colon \Gamma \to GL(n, \mathbf{F}_q)$ with $\phi(\gamma) \neq 1$. We define $S_{\Gamma}(\gamma)$ to be the minimum |G|, over all finite simple groups G, such that there exists a homomorphism $\phi \colon \Gamma \to G$ with $\phi(\gamma) \neq 1$. Note that we do not insist that any of the mentioned homomorphisms be surjective, though for D_{Γ} , the minimum |Q| for an element γ always comes from a surjective homomorphism. Fixing a finite generating subset X for Γ , for each $m \in \mathbf{N}$, we define

$$F_{\Gamma}(m) = \max_{\substack{\gamma \in \Gamma - \{1\}, \\ \|\gamma\|_X \le m}} D_{\Gamma}(\gamma),$$

$$F_{\Gamma,L}(m) = \max_{\substack{\gamma \in \Gamma - \{1\}, \\ \|\gamma\|_X \le m}} L_{\Gamma}(\gamma),$$

$$F_{\Gamma,S}(m) = \max_{\substack{\gamma \in \Gamma - \{1\}, \\ \|\gamma\|_X \le m}} S_{\Gamma}(\gamma).$$

For two functions $f, g: \mathbf{N} \to \mathbf{N}$, we write $f \leq g$ if there exists a natural number *C* such that $f(m) \leq Cg(Cm)$ for all *m* and write $f \sim g$ when $f \leq g$ and $g \leq f$. The dependence of the above functions on the generating subset *X* is mild. Specifically, if *Y* is another generating subset, the associated functions for *X*, *Y* satisfy the equivalence relation \sim (see [Bou10, Lem 1.1]). In [BM15], we proved

Received May 11, 2015. Revision received November 21, 2015.