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Apolarity and Direct Sum
Decomposability of Polynomials
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Abstract. A polynomial is a direct sum if it can be written as a sum
of two nonzero polynomials in some distinct sets of variables, up to
a linear change of variables. We analyze criteria for a homogeneous
polynomial to be decomposable as a direct sum in terms of the apolar
ideal of the polynomial. We prove that the apolar ideal of a polynomial
of degree d strictly depending on all variables has a minimal generator
of degree d if and only if it is a limit of direct sums.

1. Introduction

A homogeneous polynomial F is a direct sum if there exist nonzero polynomials
F1, F2 such that F = F1 + F2 and F1 = F1(t1, . . . , ts), F2 = F2(ts+1, . . . , tn) for
some linearly independent linear forms t1, . . . , tn. For example, F = xy is a direct
sum since F = 1

4 (x + y)2 − 1
4 (x − y)2. In coordinate-free terms, F ∈ SdV is a

direct sum if F = F1 +F2 for nonzero Fi ∈ SdVi , i = 1,2, such that V1 ⊕V2 = V .
Most polynomials are not direct sums; see Lemma 3.3. Nevertheless, it can

be difficult to show that a particular polynomial is not a direct sum. For instance,
S. Shafiei shared with us the following question: is the generic determinant detn =
det((xi,j )

n
i,j=1), a homogeneous form of degree n in n2 variables, a direct sum?

For n = 2, det2 = x1,1x2,2 −x1,2x2,1 is visibly a direct sum. On the other hand, for
n > 2, it is easy to see that the determinant is not decomposable as a direct sum in
the original variables, but it is not immediately clear whether it is decomposable
after a linear change of coordinates. We answer this question in the negative; see
Corollary 1.2.

Problem A. Give necessary or sufficient conditions for a polynomial to be a
direct sum.
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by the scholarship “START” of the Foundation for Polish Science. Furthermore, while revising
the article, he is supported by a scholarship of the Polish Ministry of Science.

675


