The Symplectic Mapping Class Group of C*P*2#*n*C*P*² with $n < 4$

Jun Li, Tian-Jun Li, & Weiwei Wu

Abstract. In this paper, we prove that the Torelli part of the symplectomorphism groups of the *n*-point ($n \leq 4$) blow-ups of the projective plane is trivial. Consequently, we determine the symplectic mapping class group. It is generated by reflections on K_{ω} -spherical class with zero *ω* area.

1. Introduction

A symplectic manifold (X, ω) is an even-dimensional manifold X with a closed, nondegenerate two-form ω . The symplectomorphism group of (X, ω) , denoted by Symp (X, ω) , is the group of diffeomorphisms ϕ of M that preserve ω and is given the C^{∞} -topology. Symp (X, ω) is an infinite-dimensional Fréchet Lie group.

For a closed four-dimensional symplectic manifold (X, ω) , since Gromov's work $[Gro85]$, the homotopy type of $Symp(X, \omega)$ has attracted much interest over the past 30 years. For the special case of some monotone 4-manifolds, the (rational) homotopy of $Symp(X, \omega)$ was fully computed in [Gro85; AM99; Eva11]. However, for an arbitrary symplectic 4-manifold, the complication grows drastically: see [Abr98; AM99; Anj02] for $S^2 \times S^2$ and [AP12] for other instances.

The goal of this note is modest: for some rational 4-manifolds, we compute $\pi_0(Symp(X, \omega))$, which is the symplectic mapping class group (denoted as SMC) for short). In the cases we consider, the homological action of $Symp(X, \omega)$ is already known in [LW11]. Therefore, it suffices to describe $\pi_0(\text{Symp}_h(X, \omega))$, which is the subgroup of $Symp(X, \omega)$ acting trivially on homology, namely, its Torelli part.

THEOREM 1.1. Symp_h(X, ω) *is connected for* $X = \mathbb{C}P^2 \# 4\overline{\mathbb{C}P^2}$ *with arbitrary symplectic form ω*.

The cases $S^2 \times S^2$ and $(\mathbb{C}P^2 \# k\overline{\mathbb{C}P^2})$ with $k < 3$ are known before. Our approach actually works in a uniform way for all $k \leq 4$ (see discussions in Remark 3.5). We also note that Theorem 1.1 is not true in general for $k \geq 5$; see Seidel's famous example in [Sei08].

Our strategy is based on Evans' beautiful approach in [Eva11] by systematically exploring the geometry of certain stable configuration of symplectic spheres (a related approach first appeared in Abreu's paper $[Abr98]$). It is summarized by

Received May 6, 2014. Revision received August 3, 2014.