Merging Divisorial with Colored Fans

Klaus Altmann,

VALENTINA KIRITCHENKO, & LARS PETERSEN

ABSTRACT. Given a spherical homogeneous space G/H of minimal rank, we provide a simple procedure to describe its embeddings as varieties with torus action in terms of divisorial fans. The torus in question is obtained as the identity component of the quotient group N/H, where N is the normalizer of H in G. The resulting Chow quotient is equal to (a blowup of) the simple toroidal compactification of $G/(HN^\circ)$. In the horospherical case, for example, it is equal to a flag variety, and the slices (coefficients) of the divisorial fan are merely shifts of the colored fan along the colors.

1. Introduction

We are working over the base field \mathbb{C} . Normal varieties *X* coming with an effective action of an algebraic torus \mathbb{T} , also called \mathbb{T} -varieties, can be encoded by divisorial fans $S^X = \sum_{D \subseteq Y} S_D^X \otimes D$ on algebraic varieties *Y* of dimension equal to the complexity of the torus action. In this notation, $D \subseteq Y$ runs through all prime divisors on *Y*, and S_D^X denotes a combinatorial object associated to *D* (being nontrivial for finitely many summands only). Let *N* denote the lattice of one-parameter subgroups of \mathbb{T} . Every S_D^X stands for a polyhedral subdivision of $N_{\mathbb{Q}}$ together with a prescribed labeling of its cells referring to the set of affine charts covering *X*.

The \mathbb{T} -variety X in question is then given as a contraction of a toric fibration over Y, and the data D and \mathcal{S}_D^X describe exactly where and how this fibration degenerates, respectively. Vice versa, X can be reconstructed explicitly from \mathcal{S}^X in two steps. First, one glues certain relative spectra over Y; the result of this procedure is called $\widetilde{\mathbb{TV}}(\mathcal{S}^X)$. Finally, we obtain X as $\mathbb{TV}(\mathcal{S}^X)$, which denotes a certain birational contraction of $\widetilde{\mathbb{TV}}(\mathcal{S}^X)$. See Section 2 for further details.

1.1. The Comparison Theorem

Let *G* be a connected reductive group, and $H \subset G$ a spherical subgroup such that the spherical homogenous space G/H is of *minimal rank* (see Definition 3.5). The

Received November 21, 2012. Revision received January 12, 2015.

The second author was supported by Dynasty foundation, AG Laboratory NRU HSE, RScF grant 14-21-00053 (Sections 3 and 7), MESRF grants ag. 11.G34.31.0023, MK-983.2013.1, and by RFBR grants 12-01-31429-mol-a and 12-01-33101-mol-a-ved. This study was carried out within "The National Research University Higher School of Economics" Academic Fund Program in 2013–2014, research grant No. 12-01-0194.