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1. Introduction

1.1. Oka’s Theorem

The following beautiful theorem of Oka, which gives a representation for holo-
morphic functions defined on p-polyhedra in C

d, has played a significant role in
the development of several complex variables.

Theorem 1.1 (Oka [26], as presented in [7]). Let δ1, . . . , δm be a collection of
polynomials in d variables normalized such that the p-polyhedron Kδ defined by

Kδ = {λ∈C
d | |δl(λ)| ≤ 1 for l = 1, . . . ,m}

lies in D
d. If φ is holomorphic on a neighborhood of Kδ , then there exists a func-

tion �, holomorphic on a neighborhood of (D−)d+m, such that

φ(λ) = �(λ, δ(λ))

for all λ∈Kδ.

Introduced originally in1936 to give an elegant new proof of the Oka–Weil approx-
imation theorem [26; 33], Oka’s theorem was a stem theorem for the development
of the theory of analytic sheaves—a powerful tool for applying function theory
to domains of holomorphy and, more generally, Stein spaces [19; 21]. Basic to
the understanding of polynomial convexity, Oka’s theorem played an important
role in the development of the theory of Banach algebras. Many operator theo-
rists first learn of this theorem in the context of one of its many basic implications:
the Arens–Calderon trick [10], which is fundamental to spectral theory and to the
corresponding functional calculus for commuting tuples of operators [18; 28; 29].

1.2. Oka Mappings

In this paper we show how ideas that are currently evolving within the operator
theory community can be adapted to obtain precise bounds for Oka’s theorem.
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