On the Johnson Filtration of the Basis-Conjugating Automorphism Group of a Free Group

ΤΑΚΑΟ ΣΑΤΟΗ

1. Introduction

For $n \ge 2$, let F_n be a free group of rank n with basis $x_1, x_2, ..., x_n$ and let $F_n = \Gamma_n(1), \Gamma_n(2), ...$ be its lower central series. We denote by Aut F_n the group of automorphisms of F_n . For each $k \ge 0$, let $\mathcal{A}_n(k)$ be the group of automorphisms of F_n that induce the identity on the nilpotent quotient group $F_n/\Gamma_n(k + 1)$. The group $\mathcal{A}_n(1)$ is called the IA-automorphism group and is also denoted by IA_n. Then we have a descending filtration

Aut
$$F_n = \mathcal{A}_n(0) \supset \mathcal{A}_n(1) \supset \mathcal{A}_n(2) \supset \cdots$$

of Aut F_n , called the Johnson filtration of Aut F_n .

The Johnson filtration of Aut F_n was originally introduced in 1963 through the remarkable pioneering work by Andreadakis [1], who showed that $\mathcal{A}_n(1), \mathcal{A}_n(2), \ldots$ is a descending central series of $\mathcal{A}_n(1)$ and that, for each $k \ge 1$, the graded quotient $\operatorname{gr}^k(\mathcal{A}_n) := \mathcal{A}_n(k)/\mathcal{A}_n(k+1)$ is a free abelian group of finite rank. Andreadakis [1] also computed the rank of $\operatorname{gr}^1(\mathcal{A}_n)$. More recently, the independent work of Cohen and Pakianathan [2; 3], Farb [5], and Kawazumi [6] has shown that $\operatorname{gr}^1(\mathcal{A}_n)$ is isomorphic to the abelianization of IA_n. The GL(n, \mathbb{Z})-module structure of $\operatorname{gr}^k(\mathcal{A}_n) \otimes_{\mathbb{Z}} \mathbb{Q}$ has been determined by Pettet [14] and Satoh [16] for k = 2 and 3, respectively. For $k \ge 4$, however, there are few results for the structure of $\operatorname{gr}^k(\mathcal{A}_n)$.

When studying the Johnson filtration, we often face a problem of how to find a generating set of $\mathcal{A}_n(k)$. Although each of the graded quotients $\operatorname{gr}^k(\mathcal{A}_n)$ is a finitely generated free abelian group, it has not yet been determined whether each of the $\mathcal{A}_n(k)$ is finitely generated or not for $k \ge 2$. Neither do we know whether the abelianization $\mathcal{A}_n(k)^{\operatorname{ab}}$ of $\mathcal{A}_n(k)$ is finitely generated for $k \ge 2$.

In the study of the Johnson filtration of Aut F_n , it is also interesting to determine whether or not $\mathcal{A}_n(1), \mathcal{A}_n(2), \ldots$ coincides with the lower central series $IA_n^{(1)}, IA_n^{(2)}, \ldots$ of IA_n . Andreadakis [1] showed that $\mathcal{A}_2(k) = IA_2^{(k)}$ and $\mathcal{A}_3(3) = IA_3^{(3)}$. By [2; 3; 5; 6] we have $\mathcal{A}_n(2) = IA_n^{(2)}$ for $n \ge 3$. Furthermore, in [14] it was shown that $IA_n^{(3)}$ has finite index in $\mathcal{A}_n(3)$. Andreadakis [1] conjectured that $\mathcal{A}_n(k) = IA_n^{(k)}$ for any $n \ge 3$ and $k \ge 3$.

Received April 27, 2010. Revision received August 23, 2010.