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1. Introduction

One of the aims of this paper is extending the fundamental Cremer theorem from
the iteration theory of one complex variable to the setting of higher-dimensional
dynamics over more general valued-fields, not necessarily C. We note that ana-
lytic function theory over such fields was already well prepared in the fundamental
work [A] around 1960.

Let K be a commutative algebraically closed field that is complete and non-
trivial with respect to an absolute value (or valuation) |·|. Then |·| is said to be
non-Archimedean if, for all z,w ∈ K, |z − w| ≤ max{|z|, |w|}. Otherwise, |·| is
said to be Archimedean, in which case K is topologically isomorphic to C (with
Hermitian norm). We extend |·| to K� (� ∈ N) as the maximum norm |Z| =
|Z|� = maxj=1,...,�|zj | for Z = (z1, . . . , z�). We consider the polydisk

P̄(Z0, r) = P̄ �(Z0, r) := {Z ∈K�; |Z − Z0| ≤ r}
for Z0 ∈K� and r > 0. The extended |·|� is non-Archimedean if and only if the
original |·|1 is also, and in this case

int P̄(Z0, r) = P̄(Z0, r).

We denote the origin in K� by O = O�. In the Archimedean case K = C, C� also
has the Hermitian norm ‖·‖ = ‖·‖� (� |·|� uniformly).

Let π : Kn+1 \ {O} → P n(K) be the canonical projection. Set the integer
�(n) = (

n+1
2

)
so that

∧2
Kn+1 ∼= K�(n) (cf. [Ko, Sec. 8.1]). We equip P n(K) with

the chordal distance [z,w] between z,w ∈ P n(K), defined as

[z,w] :=




|Z ∧W |�(n)
|Z|n+1|W |n+1

≤ 1 (|·| is non-Archimedean),

‖Z ∧W‖�(n)
‖Z‖n+1‖W‖n+1

≤ 1 (|·| is Archimedean),
(1.1)

where Z ∈ π−1(z) and W ∈ π−1(w). For z0 ∈ P n(K) and r > 0, we consider
the ball

B̄(z0, r) := {z∈ P n(K); [z, z0 ] ≤ r}.
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