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An Elementary Proof of the Cross Theorem
in the Reinhardt Case

Marek Jarnicki & Peter Pflug

1. Introduction and Main Result

The problem of continuation of separately holomorphic functions defined on a
cross has been investigated in several papers (e.g., [B; S1; S2; AkR; Za; S3; Sh;
NS; NZ1; NZ2; N; AZ; Z]) and may be formulated in the form of the following
cross theorem.

Theorem 1.1. Let Dj ⊂ C
nj be a domain of holomorphy and let Aj ⊂ Dj be a

locally pluriregular set, j = 1, . . . , N, N ≥ 2. Define the cross

X :=
N⋃

j=1

A1 × · · · × Aj−1 × Dj × Aj+1 × · · · × AN.

Let f : X → C be separately holomorphic—that is, for any (a1, . . . , aN) ∈
A1 × · · · × AN and j ∈ {1, . . . , N}, the function

Dj � zj −→ f(a1, . . . , aj−1, zj , aj+1, . . . , aN)∈ C

is holomorphic. Then f extends holomorphically to a uniquely determined func-
tion f̂ on the domain of holomorphy

X̂ :=
{
(z1, . . . , zN)∈D1 × · · · × DN :

N∑
j=1

h∗
Aj,Dj

(zj ) < 1

}
, (∗)

where h∗
Aj,Dj

is the upper regularization of the relative extremal function hAj,Dj
,

j = 1, . . . , N.

Recall that hA,D := sup{u∈ PSH(D) : u ≤ 1, u|A ≤ 0}.
Observe that in the case where Aj is open, j = 1, . . . , N, the cross X is a domain

in C
n with n := n1 + · · · + nN. Moreover, by the classical Hartogs lemma, every

separately holomorphic function on X is simply holomorphic. Consequently, the
formula (∗) is nothing more than a description of the envelope of holomorphy of
X. Thus, it is natural to conjecture that in this case the formula (∗) may be ob-
tained without the cross theorem machinery. Unfortunately, we do not know of
any such simplification.
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