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1. Introduction

One major challenge in fluid dynamics is the question of global existence and large-
time asymptotic behavior of solutions to certain initial value (Cauchy) problems
or initial-boundary value problems (IBVP) for modeling equations. For decades,
the question of global existence /finite time blow-up of smooth solutions for the
three-dimensional incompressible Euler or Navier–Stokes equations has been one
of the most outstanding open problems in applied analysis. The answer to this
question will play an important role in understanding core problems in fluid dy-
namics such as the onset of turbulence. Enormous efforts have been made on this
subject, but the resolution of some basic issues is still missing. The main diffi-
culty is to understand the vortex stretching effect in 3D flows. As part of the effort
to understand the vortex stretching effect in 3D flows, various simplified model
equations have been proposed. Among these models, the 2D Boussinesq system
is known to be one of the most commonly used because it is analogous to the 3D
incompressible Euler or Navier–Stokes equations for axisymmetric swirling flow,
and it shares a similar vortex stretching effect as that in the 3D incompressible
flow. Better understanding of the 2D Boussinesq system will undoubtedly shed
light on the understanding of 3D flows (cf. [21]).

In this paper, we consider the 2D inviscid heat conductive Boussinesq equations


Ut + U · ∇U + ∇P = θe2,

θt + U · ∇θ = κ�θ,

∇ · U = 0,

(1.1)

whereU = (u, v) is the velocity vector field, P is the scalar pressure, θ is the scalar
temperature, the constant κ > 0 models thermal diffusion, and e2 = (0, 1)T. In
this paper, we consider (1.1) in a bounded domain 
 ⊂ R

2 with smooth boundary
∂
. The system is supplemented by the following initial and boundary conditions:{

(U, θ)(x, 0) = (U0, θ0)(x), x ∈
,

U · n|∂
 = 0, θ |∂
 = θ̄,
(1.2)

where n is the unit outward normal to ∂
, and θ̄ is a constant.
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