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Singular Loci of
Grassmann–Hibi Toric Varieties

J. Brown & V. Lakshmibai

Introduction

Let K denote the base field, which we assume to be algebraically closed and of ar-
bitrary characteristic. Given a distributive lattice L, letX(L) denote the affine vari-
ety in A#L whose vanishing ideal is generated by the binomialsXτXϕ−Xτ∨ϕXτ∧ϕ
in the polynomial algebra K[Xα ,α ∈ L] (here, τ ∨ ϕ (resp. τ ∧ ϕ) denotes the
join—the smallest element of L greater than both τ and ϕ (resp. the meet—the
largest element of L smaller than both τ and ϕ)). These varieties were extensively
studied by Hibi in [10], where it is proved that X(L) is a normal variety. On the
other hand, Eisenbud and Sturmfels [6] showed that a binomial prime ideal is toric
(here, “toric ideal” is in the sense of [17]). Thus one obtains that X(L) is a normal
toric variety. We shall refer to such an X(L) as a Hibi toric variety.

For L the Bruhat poset of Schubert varieties in a minuscule G/P, it is shown in
[8] that X(L) flatly deforms to Ĝ/P (the cone over G/P); in other words, there
exists a flat family over A1 with Ĝ/P as the generic fiber and X(L) as the spe-
cial fiber. More generally, for a Schubert variety X(w) in a minuscule G/P, it is
shown in [8] that X(Lw) flatly deforms to X̂(w), the cone over X(w) (here, Lw is
the Bruhat poset of Schubert subvarieties of X(w)). In a subsequent paper [9], the
authors studied the singularities of X(L) for L the Bruhat poset of Schubert vari-
eties in the Grassmannian; they also gave a conjecture (see [9, Sec. 11]; see also
Remark 9.1 of this paper) giving a necessary and sufficient condition for a point
on X(L) to be smooth and proved the sufficiency part of the conjecture. Subse-
quently, the necessary part of the conjecture was proved in [2] by Batyrev and
colleagues. The toric varieties X(L) for L the Bruhat poset of Schubert varieties
in the Grassmannian play an important role in the area of mirror symmetry; for
more details, see [1; 2]. We refer to such an X(L) as a Grassmann–Hibi toric va-
riety (or G-H toric variety).

The proof (in [9]) of the sufficiency part of the conjecture in [9] uses the Jaco-
bian criterion for smoothness, whereas the proof (in [2]) of the necessary part of
the conjecture in [9] uses certain desingularization of X(L).

It should be remarked that neither [9] nor [2] discusses the relationship between
the singularities of X(L) and the combinatorics of the polyhedral cone associated
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