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1. Introduction

Let S n−1 be the unit sphere in Rn (n ≥ 2) with area element dσ(x ′). A function
	(x, z) defined on Rn × Rn is said to be in L∞(Rn) × Lq(S n−1), q ≥ 1, if 	

satisfies the following conditions:

(1) for any x, z∈ Rn, and λ > 0, 	(x, λz) = 	(x, z);
(2) ‖	‖L∞(Rn)×Lq(S n−1) := supx∈Rn

(∫
S n−1|	(x, z ′)|q dσ(z ′)

)1/q
< ∞, where z ′ =

z/|z| for any z∈ Rn \ {0}.
For γ ≥ 0, we define the operator Tγ with variable kernel by

Tγ f(x) = p.v.
∫

Rn

	(x, x − y)

|x − y|n+γ
f(y) dy,

where f ∈ S(Rn) and 	∈L∞(Rn) × L1(S n−1) satisfies∫
S n−1

	(x, z ′)Ym(z
′) dσ(z ′) = 0 for any x ∈ Rn (1.1)

for all spherical harmonic polynomials Ym with degree ≤ [γ ]. In the sequel, we
denote T0 = T when γ = 0 for simplicity.

Obviously, T is the singular integral operator with variable kernel, which was
first studied by Calderón and Zygmund in [2]. They found that these operators
connect closely to the problem about the second-order linear elliptic equations
with variable coefficients. Calderón and Zygmund obtained the following result.

Theorem A (see [2] or [3]). If 	(x, z ′)∈L∞(Rn)×Lq(S n−1), q > 2(n−1)/n,
satisfies ∫

S n−1
	(x, z ′) dσ(z ′) = 0 for any x ∈ Rn, (1.2)

then there is a constant C > 0 such that ‖Tf ‖L2 ≤ C‖f ‖L2 .

In [16], for γ > 0 the operator Tγ is called the hypersingular integral operator with
variable kernel. Chen, Fan, andYing [4] extended Theorem A to the homogeneous
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