Comodules for Some Simple \mathcal{O} -forms of \mathbb{G}_m

N. E. CSIMA & R. E. KOTTWITZ

Tannakian theory allows one to understand an affine group scheme G over a commutative base ring A in terms of the category Rep(G) of G-modules, by which is meant comodules for the Hopf algebra corresponding to G. The theory is especially well developed [Sa] in the case that A is a field, and some parts of the theory still work well over more general rings A, say discrete valuation rings (see [Sa; W]).

When A is a field of characteristic 0 and G is connected reductive, the category $\operatorname{Rep}(G)$ is very well understood. However, with the exception of groups as simple as the multiplicative and additive groups, little seems to be known about what $\operatorname{Rep}(G)$ looks like concretely when A is no longer assumed to be a field, even in the most favorable case in which A is a discrete valuation ring and G is a flat affine group scheme over A with connected reductive general fiber.

The modest goal of this paper is to give a concrete description of Rep(G) for certain flat group schemes *G* over a discrete valuation ring \mathcal{O} such that the general fiber of *G* is \mathbb{G}_m . It should be noted that \mathcal{O} -forms of \mathbb{G}_m are natural first examples to consider, as $\mathbb{G}_m/\mathbb{Q}_p$ arises in the Tannakian description [Sa] of the category of isocrystals with integral slopes.

Choose a generator π of the maximal ideal of \mathcal{O} and write F for the field of fractions of \mathcal{O} . For any nonnegative integer k, the construction of Section 1.1, when applied to $f = \pi^k$, yields a commutative flat affine group scheme G_k over \mathcal{O} whose general fiber is \mathbb{G}_m . The \mathcal{O} -points of G_k are given by

$$G_k(\mathcal{O}) = \{t \in \mathcal{O}^{\times} : t \equiv 1 \mod \pi^k\},\$$

a principal congruence subgroup arising naturally in the much more general context of Moy–Prasad [MoP] subgroups of *p*-adic reductive groups. These form a projective system

$$\cdots \to G_2 \to G_1 \to G_0 = \mathbb{G}_m$$

in an obvious way, and we may form the projective limit $G_{\infty} := \text{proj } \lim G_k$. The Hopf algebra S_k corresponding to G_k can be described explicitly (see Sections 1.1 and 1.2). The Hopf algebra S_{∞} corresponding to G_{∞} is

inj lim
$$S_k = \left\{ \sum_{i \in \mathbb{Z}} x_i T^i \in F[T, T^{-1}] : \sum_{i \in \mathbb{Z}} x_i \in \mathcal{O} \right\}.$$

Received September 29, 2008. Revision received February 26, 2009. Partially supported by NSF Grant no. DMS-0245639.