Wonderful Compactification of an Arrangement of Subvarieties

Li Li

1. Introduction

The purpose of this paper is to define the so-called wonderful compactification of an arrangement of subvarieties, to prove its expected properties, to give a construction by a sequence of blow-ups, and to discuss the order in which the blow-ups can be carried out.

Fix a nonsingular algebraic variety Y over an algebraically closed field (of arbitrary characteristic). An *arrangement* of subvarieties S is a finite collection of nonsingular subvarieties such that all nonempty scheme-theoretic intersections of subvarieties in S are again in S or, equivalently, such that any two subvarieties intersect cleanly and the intersection is either empty or a subvariety in this collection (see Definition 2.1).

Let S be an arrangement of subvarieties of Y. A subset $G \subseteq S$ is called a *building set of* S if, for all $S \in S \setminus G$, the minimal elements in $\{G \in G : G \supseteq S\}$ intersect transversally and the intersection is S. A set of subvarieties G is called a building set if all the possible intersections of subvarieties in G form an arrangement G (called the *induced arrangement* of G) and G is a building set of G (see Definition 2.2).

For any building set \mathcal{G} , the wonderful compactification of \mathcal{G} is defined as follows.

DEFINITION 1.1. Let \mathcal{G} be a nonempty building set and $Y^{\circ} = Y \setminus \bigcup_{G \in \mathcal{G}} G$. The closure of the image of the natural locally closed embedding

$$Y^{\circ} \hookrightarrow \prod_{G \in \mathcal{G}} Bl_G Y$$

is called the *wonderful compactification* of the arrangement \mathcal{G} and is denoted by $Y_{\mathcal{G}}$.

The following description of $Y_{\mathcal{G}}$ is the main theorem and is proved at the end of Section 2.3. A \mathcal{G} -nest is a subset of the building set \mathcal{G} satisfying some inductive condition (see Definition 2.3).

THEOREM 1.2. Let Y be a nonsingular variety and let G be a nonempty building set of subvarieties of Y. Then the wonderful compactification Y_G is a nonsingular variety. Moreover, for each $G \in G$ there is a nonsingular divisor $D_G \subset Y_G$ such that:

Received March 20, 2008. Revision received November 10, 2008.