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1. Introduction

This paper concerns “special loci” in the moduli space 9 [, parameterizing the
smooth projective curves of genus g with n unordered marked points. Classically,
one fixes a finite-order diffeomorphism ¢ of a compact orientable topological sur-
face S of genus g with n marked points. The special locus associated to ¢ cor-
responds to the set of complex structures that can be put on S such that ¢ is an
automorphism of the associated marked algebraic curve. The main theorem of
this paper (Theorem 2.18) uses scheme theory to reformulate the notion of spe-
cial locus in purely algebraic terms. A related result (Corollary 2.23) shows how
the notion can often be further reformulated combinatorially in many cases. As a
consequence of these results, the notion of special locus can be extended to curves
over more general algebraically closed fields, including the characteristic-p case.
In the last section, we consider some examples both in characteristic 0 and char-
acteristic p. It turns out that special loci in characteristic p behave differently than
the analogous special loci in characteristic 0 because of differences in the corre-
sponding Riemann—-Hurwitz formulas.

This paper builds upon previous work by Gonzalez-Diez, Harvey, and Schneps.
Gonzélez-Diez and Harvey [GoH] considered curves of genus g > 2 over the com-
plex numbers without marked points, and they studied the loci of those with a given
automorphism group acting in a specified topological way. Cornalba [C] gave a
complete classification of the irreducible subvarieties corresponding to the curves
whose automorphism group contains a fixed cyclic subgroup of prime order in the
case g > 1, n = 0, over the complex numbers (but without specifying the topo-
logical action). Later, Schneps [Scl] considered the cyclic case for genus 0 with n
marked points and for genus 1 with n = 1 or 2 marked points, which correspond to
specifying a finite-order diffeomorphism of the underlying real 2-manifold. Re-
lated work has also been done by Magaard, Shaska, Shpectorov, and Volklein
[MSSV], where the group but not the topological behavior is specified.

The main result in Section 2 provides a purely algebraic definition of special
locus using scheme theory and without reference to differential or topological no-
tions. In order to do this, we rely on the fact that the classical (“differential”)
special locus is irreducible. What we do is define two automorphisms «,a’ of
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