Domains in Almost Complex Manifolds with an Automorphism Orbit Accumulating at a Strongly Pseudoconvex Boundary Point

KANG-HYURK LEE

1. Introduction

Let (M, J) be an almost complex manifold and let Ω be a domain in M. Call $p \in \partial \Omega$ a *strongly J-pseudoconvex boundary point* if there is a C^2 local defining function whose Levi form is positive definite for the *J-complex tangent vector space* $T_p^J \partial \Omega = T_p \partial \Omega \cap JT_p \partial \Omega$ of $\partial \Omega$ at p. For $p \in \Omega$ and a sequence $\varphi^{\nu} \in \text{Aut}(\Omega, J)$, call the sequence $\{\varphi^{\nu}(p) : \nu = 1, 2, ...\}$ an *automorphism orbit* of Ω . This paper pertains to the following problem.

Classify the domains Ω in an almost complex manifold (M, J) that admit an automorphism orbit accumulating at a strongly J-pseudoconvex boundary point.

In the complex case, the Wong–Rosay theorem states that such domains are biholomorphically equivalent to the unit ball \mathbb{B}_n in \mathbb{C}^n (see [3; 5; 10; 19; 22]). For the real 4-dimensional almost complex case, Gaussier and Sukhov [7] have shown that under a certain restriction such (Ω, J) is biholomorphic to the unit ball \mathbb{B}_2 in \mathbb{C}^2 . But when dim $M \ge 6$ it turns out that there are infinitely many biholomorphically distinct domains, as the following example shows.

EXAMPLE 1.1. Let $z_j = x_j + iy_j$ be the standard coordinate functions of $\mathbb{C}^3 \simeq \mathbb{R}^6$. Set $z' = (z_2, z_3)$ and $z = (z_1, z')$. Let $\rho_t(z) = \operatorname{Re} z_1 + t |z'|^2$ and let

$$J_t(x) = \begin{pmatrix} 0 & -1 & 0 & 0 & 0 & tx_2 \\ 1 & 0 & 0 & 0 & tx_2 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

for $t \in \mathbb{R}$. Consider the domain $\mathbb{H}_t = \{z \in \mathbb{C}^3 : \rho_t(z) < 0\}$ equipped with the almost complex structure J_1 . It turns out that (\mathbb{H}_t, J_1) with t > 1/8 has automorphisms $\Lambda_k(z) = (z_1/k, z'/\sqrt{k})$, which induces an orbit accumulating at 0 that is

Received November 17, 2004. Revision received March 15, 2005.

Research supported in part by Grant no. KRF-2002-070-C00005 (PI: K. T. Kim) from the Korea Research Foundation.