Graded Cofinite Rings of Differential Operators

1. Introduction

In this paper we study subalgebras \mathcal{A} of the algebra $\mathcal{D}(X)$ of differential operators on a smooth variety X that are big in the following sense: using the order of a differential operator, the ring $\mathcal{D}(X)$ is equipped with a filtration. Its associated graded algebra $\overline{\mathcal{D}}(X)$ is commutative and can be regarded as the set of regular functions on the cotangent bundle of X. The subalgebra \mathcal{A} inherits a filtration from $\mathcal{D}(X)$, and its associated graded algebra $\overline{\mathcal{A}}$ is a subalgebra of $\overline{\mathcal{D}}(X)$. We call \mathcal{A} graded cofinite in $\mathcal{D}(X)$ if $\overline{\mathcal{D}}(X)$ is a finitely generated $\overline{\mathcal{A}}$ -module.

Our guiding example of a graded cofinite subalgebra is the algebra of invariants $\mathcal{D}(X)^W$, where W is a finite group acting on X. Other examples can be constructed as follows. Let $\varphi: X \to Y$ be a finite dominant morphism onto a normal variety Y. Then we put

$$\mathcal{D}(X,Y) = \{ D \in \mathcal{D}(X) \mid D(\mathcal{O}(Y)) \subseteq \mathcal{O}(Y) \}.$$
(1.1)

We show (Corollary 3.6) that this subalgebra is graded cofinite if and only if the ramification of φ is uniform—that is, if the ramification degree of φ along a divisor $D \subset X$ depends only on the image $\varphi(D)$.

It should be noted that these two constructions are in fact more or less equivalent. In Theorem 3.1 we show that $\mathcal{D}(X)^W = \mathcal{D}(X, X/W)$. Conversely, we show in Proposition 3.3 that $\mathcal{D}(X, Y) = \mathcal{D}(\tilde{X})^W$, where $\tilde{X} \to X$ is a suitable finite cover of X and W is a finite group acting on \tilde{X} .

Our main result is that, up to automorphisms, every graded cofinite subalgebra is of the form just described.

1.1. THEOREM. Let X be a smooth variety and A a graded cofinite subalgebra of $\mathcal{D}(X)$. Then there is an automorphism Φ of $\mathcal{D}(X)$, inducing the identity on $\overline{\mathcal{D}}(X)$, such that $\mathcal{A} = \Phi \mathcal{D}(X, Y)$ for some uniformly ramified morphism $\varphi \colon X \to Y$.

The main motivation for this notion came from the following result of Levasseur and Stafford [LSt]. Let W be a finite group acting linearly on a vector space V; then $\mathcal{D}(V)^W$ is generated by the W-invariant functions $\mathcal{O}(V)^W$ and the W-invariant constant coefficient differential operators $S^*(V)^W$. For general varieties X, there

Received March 30, 2004. Revision received September 14, 2005.