Automorphisms of Affine Surfaces with \mathbb{A}^1 -Fibrations

R. V. GURJAR & M. MIYANISHI

1. Introduction

Let X be a normal affine surface defined over the complex field C, which has at worst quotient singularities. We call X simply a *log affine surface*. If further $H_i(X; \mathbb{Q}) = (0)$ for i > 0 then X is called a *log* \mathbb{Q} -homology plane (if X is smooth then X is simply called a \mathbb{Q} -homology plane). Let G_a denote the complex numbers with addition as an algebraic group. In this paper we are mainly interested in log affine surfaces X that have an \mathbb{A}^1 -fibration. Of particular interest are surfaces that admit a regular action of G_a . Such actions up to conjugacy correspond in a bijective manner to \mathbb{A}^1 -fibrations on X with base a smooth affine curve. Algebraically, these actions correspond bijectively to locally nilpotent derivations of the coordinate ring $\Gamma(X)$ of X. The set of all elements of $\Gamma(X)$ that are killed under all the locally nilpotent derivations of $\Gamma(X)$ is called the *Makar-Limanov invariant* of X and denoted by ML(X).

If a smooth affine surface has two independent G_a actions then its Makar-Limanov invariant is trivial. Gizatullin [9] and Bertin [2] gave a necessary and sufficient condition for this to happen. More recently, Bandman and Makar-Limanov [1] proved that a smooth affine surface X with trivial canonical bundle and ML(X) = **C** is an affine surface in \mathbb{A}^3 defined by $\{xy = p(z)\}$, where p(z) is a polynomial with distinct roots. Masuda and Miyanishi [12] applied this to determine the structure of a Q-homology plane with trivial ML-invariant. They proved that such a surface is a quotient of the Bandman–Makar-Limanov hypersurface by the action of a finite cyclic group (see result (3) in the listing that follows).

In this paper we extend the last result to the case of log \mathbb{Q} -homology planes in Section 2. Similar and related results in Section 2 and Section 3 have been obtained independently by Daigle and Russell [4] and Dubouloz [5]. An automorphism of a smooth affine surface sends fibers of one \mathbb{A}^1 -fibration with affine base to the fibers of another \mathbb{A}^1 -fibration. If these two fibrations are different then the Makar-Limanov invariant of the surface is trivial. If a smooth affine surface has an \mathbb{A}^1 -fibration whose base is not an affine curve, then this fibration does not correspond to a G_a action. In this case the geometry of the fibration enters into the picture. In Section 4 we give a sufficient condition for uniqueness of an \mathbb{A}^1 fibration on a smooth affine surface. This involves the number of multiple fibers

Received May 8, 2003. Revision received August 25, 2004.