A Gluing Formula for the Seiberg–Witten Invariant along T^3

B. DOUG PARK

1. Introduction

This paper is a continuation of studies initiated in [P1]. For the definition and basic properties of the Seiberg–Witten monopole invariant, we refer the reader to the bibliography in [P1]. Our hope is that these studies will ultimately yield a useful theory of Floer-type cohomology for 3-manifolds that is *infinitely* generated. The present goal of this paper is to provide a method of computing the Seiberg–Witten (SW) invariant of a smooth 4-manifold that can be decomposed into two parts along an embedded 3-torus. Under some mild assumptions, we prove a gluing formula for the SW invariant in terms of products of suitably perturbed relative SW invariants of the two end pieces whose common boundary is T^3 . In particular, our formula does not require that one of the glued-up pieces be $T^2 \times D^2$, as is the case in [MMS]. We shall derive some interesting applications of this product formula and others in future work [P2].

ACKNOWLEDGMENTS. The author would like to thank Zoltán Szabó for generously providing some much-needed guidance and inspiration. He would also like to thank Tian-Jun Li, Michael McCooey, and the referee for very helpful comments and suggestions. Part of this work was done while the author was visiting the Korea Institute for Advanced Study.

2. Perturbed Solutions over the 3-Torus

We study the Seiberg–Witten equations over the 3-manifold $Y = T^3$. We shall always view Y as the trivial S^1 bundle over the 2-torus. Let Σ be the base space T^2 ; that is, $Y = \Sigma \times S^1$. Note that Y is the unit circle bundle of the canonical line bundle K_{Σ} over Σ (deg(K_{Σ}) = 0).

Choose a constant curvature connection on the unit circle bundle *Y* and let $i\zeta$ denote the corresponding connection form. Let g_{Σ} be a constant curvature metric on the surface Σ , normalized so that the area of Σ is equal to 1. We endow *Y* with the metric

$$h_Y = \zeta \otimes \zeta + \pi^*(g_{\Sigma}),$$

where $\pi: Y \to \Sigma$ is the bundle projection map. Of course, the global 1-form ζ allows a reduction in the structure group of *TY* to SO(2), and the Levi–Civita

Received June 30, 2001. Revision received February 25, 2002.