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A Jordan domain G with rectifiable boundary is said to be a Smirnov domain (or
domain of Smirnov type) if the derivative of the mggping function f(z) from lzl <1
onto G is an “outer” function, that is, if log |f'(rei?)| is the Poisson integral of the
boundary values log If‘(eit)l . For a fuller discussion of this property, which is of
decisive significance for many questions regarding function theory in G, the reader
is referred to Privalov [13, p. 159]. A number of sufficient conditions (in terms of
geometrical properties of G) that G be of Smirnov type are known, although the pic-
ture is far from complete. Some criteria of this kind, due to Smirnov, Keldysh, and
Lavrentiev, are given in [13]. More recently, Tumarkin [15] has established a
powerful sufficiency criterion. In [7], the concept of Smirnov domain was extended
to multiply connected domains; but here we shall be concerned only with Jordan do-
mains.

The main result achieved by Tumarkin in [15] may be roughly expressed this
way: if every point of the boundary F of G, with countably many exceptions, is con-
tained in a “nice” arc of F, then G is of Smirnov type (for a more precise formula-
tion, see below). A weaker criterion of this kind was given in [10], the authors being
at the time unaware of Tumarkin’s results. The method employed in [10] may how-
ever be extended to yield a stronger result in which the allowable set of “bad” bound-
ary points need not be countable, provided it is “sparse” in a certain precise metric
sense. Section 1 of the present paper is devoted to this result. (Actually, in Theo-
rem 1 we prove a slightly more general result, which does not presuppose rectifi-
ability of the boundary.)

Section 2 of the present paper is essentially independent of Section 1, the only
common link being that the remarkable type of pathological curve (which we call a
pseudocircle) discussed there was first constructed by Keldysh and Lavrentiev to
show that there exist domains not of Smirnov type. Pseudocircles may be charac-
terized independently of conformal mapping (see Theorem 2). The direct construc-
tion of some pseudocircle without function theoretic methods would be of interest;
but we have not been able to achieve it. Section 2 summarizes the known informa-
tion concerning pseudocircles.

Notation and conventions. In this paper, D shall always denote the unit disk
Iz] <1, and C its boundary. An (open) smooth arc denotes a homeomorphic image
of the interval 0 <t < 1 by a complex-valued function w(t) having a continuous
derivative that is different from zero for all t (0 <t < 1). This is equivalent to
saying that the oriented arc parametrized by w(t) admits a continuously varying unit
tangent vector. Concerning HP-spaces and general function-theoretic background,
the reader may consult [13]. Aninner function or function of class U in the sense
of Seidel is a function f of class H® in D with If(eie)l =1 a.e. The outer factor
of an f € HP is the quotient of f by its inner factor in the canonical factorization,
and f is an outer function if it is equal to its outer factor. (The terms “inner” and
“outer,” introduced by Beurling, are not particularly suggestive; but they correspond
to a distinction that is vital in many questions.)
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