WEYL'S THEOREM FOR NONNORMAL OPERATORS

L. A. Coburn

1. INTRODUCTION

Let $\mathcal{B}(H)$ be the algebra of all bounded operators on an infinite-dimensional complex Hilbert space H, and let \mathcal{H} be the closed ideal of compact operators. I write $\sigma(A)$ for the spectrum of A in $\mathcal{B}(H)$, and I define the Weyl spectrum $\omega(A)$ by

$$\omega(A) = \int \sigma(A + K)$$

where the intersection is taken over all K in \mathcal{K} . A celebrated theorem of Weyl [7] asserts that if A is normal (A* A = AA*), then $\omega(A)$ consists precisely of all points in $\sigma(A)$ except the isolated eigenvalues of finite multiplicity.

In this paper, I show that Weyl's theorem holds for two large classes of generally nonnormal operators. The first of these is the class of hyponormal operators, which has been studied in [6]. The second class of operators for which Weyl's theorem holds is the class of Toeplitz operators, which has been studied in [2], [3], [8] and in many other papers. (References to much of the pertinent literature can be found in [2].) Finally, the present study of hyponormal operators and Toeplitz operators suggests a notion of "extremally noncompact" operators, which I examine in the last part of this paper.

2. PRELIMINARIES

Recall that an operator A is a Fredholm operator if its range R(A) is closed and both $R(A)^{\perp}$ and the null space N(A) are finite-dimensional. The Fredholm operators $\mathscr F$ constitute a multiplicative open semigroup in $\mathscr B(H)$. In fact [1], if π is the natural quotient map from $\mathscr B(H)$ to $\mathscr B(H)/\mathscr K$, then A is in $\mathscr F$ if and only if $\pi(A)$ is invertible. For any A in $\mathscr F$, the index i(A) is defined by the formula

$$i(A) = \dim N(A) - \dim R(A)^{\perp}$$
,

and it is known that i is a continuous integer-valued function on F.

Schechter [5] has observed that for any operator A,

$$\omega(A) = \{\lambda \mid A - \lambda \notin \mathscr{F}\} \cup \{\lambda \mid A - \lambda \in \mathscr{F} \text{ and } i(A - \lambda) \neq 0\},$$

and I shall use this characterization of $\omega(A)$. Note that by Schechter's result, $\omega(A)$ is never empty, since

$$\{\lambda \mid A - \lambda \notin \mathscr{F}\} = \sigma[\pi(A)].$$

It should also be noted that

Received March 17, 1966.