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1. Introduction

In classical potential theory one encounters the notions of polar set and complete
polar set. AseE C R” is calledpolar if there exists a subharmonicon a neigh-
borhood ofE such thatE C {x : u(x) = —oo}; E is calledcomplete polaif one
actually hast = {x : u(x) = —oo}. (The function identically equal te-cc is
not considered to be subharmonic.) It is well known that we mayiiakebe de-
fined on all ofR” and also thaft is complete polar if and only if is polar and a
G (cf. [5]).

In pluripotential theory the situation is more complicated. ABéh a domain
D c C" is calledpluripolar in D if there exists a plurisubharmonic functian
on D such thatE C {z : u(z) = —oo}; E is calledcomplete pluripolar inD if,
for some plurisubharmonic functianon D, we haveE = {z : u(z) = —oo}.
Although Josefson’s theorem [4] asserts thdieing pluripolar inD implies that
E is pluripolar inC", the corresponding assertion is false in the complete pluri-
polar setting. Also, a pluripola s need not be complete: the open unit diskn
the complex linezz = 0 in C2? is aG; but is not complete itC2. In fact, every
plurisubharmonic function of£? that equals-co on A must equal-oo on the
line z; = 0. Thus, it is reasonable to introduce thi@ripolar hull of a pluripolar
setE C D as

Eg:{zeD:u|E=—oo = u(z):—ooVuePSI—(D)},

where PSHKD) denotes the set of all plurisubharmonic functionsionWe also
have use for theegative pluripolar hull,

EE:{zeD:u’Ez—oo = u(z):—ooVuePSl—(D),ufO}.

If E is complete pluripolar irD then clearlyE is aGs andE}, = E. A partial
converse is Zeriahi's theorem [11].

THEOREM 1. Let E be a pluripolar subset of a pseudoconvex donfaiim C”. If
E}, = E andE is aG; as well as anF,, thenE is complete pluripolar inD.
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