Graphs of Holomorphic Functions with Isolated Singularities Are Complete Pluripolar

JAN WIEGERINCK

1. Introduction

In classical potential theory one encounters the notions of polar set and complete polar set. A set $E \subset \mathbb{R}^n$ is called *polar* if there exists a subharmonic *u* on a neighborhood of *E* such that $E \subset \{x : u(x) = -\infty\}$; *E* is called *complete polar* if one actually has $E = \{x : u(x) = -\infty\}$. (The function identically equal to $-\infty$ is not considered to be subharmonic.) It is well known that we may take *u* to be defined on all of \mathbb{R}^n and also that *E* is complete polar if and only if *E* is polar and a G_δ (cf. [5]).

In pluripotential theory the situation is more complicated. A set *E* in a domain $D \subset \mathbb{C}^n$ is called *pluripolar in D* if there exists a plurisubharmonic function *u* on *D* such that $E \subset \{z : u(z) = -\infty\}$; *E* is called *complete pluripolar in D* if, for some plurisubharmonic function *u* on *D*, we have $E = \{z : u(z) = -\infty\}$. Although Josefson's theorem [4] asserts that *E* being pluripolar in *D* implies that *E* is pluripolar in \mathbb{C}^n , the corresponding assertion is false in the complete pluripolar setting. Also, a pluripolar G_{δ} need not be complete: the open unit disk Δ in the complex line $z_2 = 0$ in \mathbb{C}^2 is a G_{δ} but is not complete in \mathbb{C}^2 . In fact, every plurisubharmonic function on \mathbb{C}^2 that equals $-\infty$ on Δ must equal $-\infty$ on the line $z_2 = 0$. Thus, it is reasonable to introduce the *pluripolar hull* of a pluripolar set $E \subset D$ as

$$E_D^* = \{ z \in D : u \big|_E = -\infty \implies u(z) = -\infty \ \forall u \in \mathrm{PSH}(D) \},\$$

where PSH(D) denotes the set of all plurisubharmonic functions on D. We also have use for the *negative pluripolar hull*,

$$E_D^- = \left\{ z \in D : u \, \Big|_E = -\infty \implies u(z) = -\infty \, \forall u \in \mathrm{PSH}(D), \, u \le 0 \right\}.$$

If *E* is complete pluripolar in *D* then clearly *E* is a G_{δ} and $E_D^* = E$. A partial converse is Zeriahi's theorem [11].

THEOREM 1. Let *E* be a pluripolar subset of a pseudoconvex domain *D* in \mathbb{C}^n . If $E_D^* = E$ and *E* is a G_δ as well as an F_σ , then *E* is complete pluripolar in *D*.

Received September 20, 1999. Revision received December 20, 1999.