Gluck Surgery along a 2-Sphere in a 4-Manifold is Realized by Surgery along a Projective Plane

Atsuko Katanaga, Osamu Saeki, Masakazu Teragaito, & Yuichi Yamada

0. Introduction

One of the well-known methods to construct a new 4-manifold from an old one is the Gluck surgery along an embedded 2-sphere with trivial normal bundle, which is defined as follows (see [G]). Let *M* be a smooth 4-manifold and *K* a smoothly embedded 2-sphere in *M*. We suppose that the tubular neighborhood N(K) of *K* in *M* is diffeomorphic to $S^2 \times D^2$. Let τ be the self-diffeomorphism of $S^2 \times S^1 =$ $\partial(S^2 \times D^2)$ defined by $\tau(z, \alpha) = (\alpha z, \alpha)$, where we identify S^1 with the unit circle of **C** and S^2 with the Riemann sphere $\hat{\mathbf{C}} = \mathbf{C} \cup \{\infty\}$. Then consider the 4-manifold obtained from M – Int N(K) by regluing $S^2 \times D^2$ along the boundary using τ . We say that the resulting 4-manifold, denoted by $\Sigma(K)$, is obtained from *M* by the *Gluck surgery* along *K* (see [G] or [Kir2, p. 16]).

When the ambient 4-manifold is the 4-sphere S^4 , we call a smoothly embedded 2-sphere *K* in S^4 a 2-*knot*. In this case, the resulting 4-manifold $\Sigma(K)$ is always a homotopy 4-sphere. It has been known that, for certain 2-knots *K*, $\Sigma(K)$ is again diffeomorphic to S^4 (see e.g. [Gom1; Gor; HMY; Mo; Pl]). It has not been known if the Gluck surgery along a 2-knot *K* in S^4 produces a 4-manifold $\Sigma(K)$ not diffeomorphic to S^4 for some *K* (see [Kir1, 4.11, 4.24, 4.45] and [Gom2]). On the other hand, for 2-spheres embedded in 4-manifolds *M* not necessarily diffeomorphic to S^4 , Akbulut [Ak1; Ak2] constructed an example of an embedded 2-sphere *K* in such an *M* such that $\Sigma(K)$ is homeomorphic but is not diffeomorphic to *M*. For Gluck surgeries, see also [Ak3; AK; AR; Gom1; Gom2].

Price [P] considered a similar construction using embedded projective planes in S^4 . Let *P* be a smoothly embedded projective plane in S^4 . In the following, we fix an orientation for S^4 . Then it is known that the tubular neighborhood N(P) of *P* is always diffeomorphic to the nonorientable D^2 -bundle over $\mathbb{R}P^2$ with Euler number ± 2 (see [M1; M2]), which we denote by N_e with $e = \pm 2$ the Euler number. Note that ∂N_e is diffeomorphic to the quaternion space Q, whose fundamental

Received December 18, 1998. Revision received June 22, 1999.

The second author has been partially supported by the Anglo-Japanese Scientific Exchange Programme, run by JSPS and the Royal Society. The fourth author was partially supported by JSPS Research Fellowship for Young Scientists.

Michigan Math. J. 46 (1999).