E^3 -Complete Timelike Surfaces in E_1^3 Are Globally Hyperbolic

SENCHUN LIN & TILLA WEINSTEIN

1. Introduction

A C^{∞} immersion \mathcal{Z} of a surface S into Minkowski 3-space E_1^3 can also be viewed as a C^{∞} immersion of S into Euclidean 3-space E^3 . If the metric I induced on S by $\mathcal{Z}: S \to E_1^3$ is Lorentzian, then $\mathcal{Z}: S \to E_1^3$ is called *timelike*. If the metric I_{ε} induced on S by $\mathcal{Z}: S \to E^3$ is complete, then $\mathcal{Z}: S \to E_1^3$ is said to be E^3 -complete.

In all results below, S is a surface provided with the Lorentzian metric I and the time orientation induced by a timelike C^{∞} immersion $\mathcal{Z}: S \to E_1^3$. Among the conformally invariant properties definable on a time-oriented Lorentzian surface are the causality conditions of interest in general relativity. Two of these conditions, stable causality and global hyperbolicity (defined in [1, pp. 63–65]) are dealt with in this paper.

Theorem 1 makes the elementary observation that S must be stably causal. In case Z is E^3 -complete, Theorem 2 states that S is globally hyperbolic. If $Z: S \to E_1^3$ is E^3 -complete from a simply connected S, Theorem 3 states that S is C^∞ -conformally diffeomorphic to a subset of the Minkowski 2-plane E_1^2 , and places strong restrictions on the conformal boundary $\partial_0 S$, which was defined by Kulkarni in [3] and studied in [7]. (This strengthens slightly a result announced without proof on p. 196 in [7].)

Under the hypotheses of Theorem 3, Theorem 4 states that S is C^{∞} -conformally diffeomorphic to E_1^2 provided that the mean curvature H for $\mathcal{Z}: S \to E_1^3$ vanishes outside a compact set on S. This generalizes the conformal Bernstein theorem from [4], which states that any entire timelike minimal surface in E_1^3 is C^{∞} -conformally diffeomorphic to E_1^2 .

Because global hyperbolicity is the most restrictive of the causality conditions on space-times discussed in [1], it may appear that the surface S in Theorems 2 and 3 has little room for variation in its global Lorentzian structure. To show that this need not be the case, we describe in Section 4 uncountably many C^0 - (and thereby C^{∞} -) conformally distinct simply connected, globally hyperbolic subsurfaces S_r of E_1^2 . Like all subsurfaces of E_1^2 , the S_r are C^{∞} isometrically imbedded in E_1^3

Received September 11, 1996.