On Removable Singularities for the Analytic Zygmund Class

Joan Josep Carmona & Juan Jesús Donaire

1. Introduction and Statement of Results

A complex-valued function f defined on the complex plane \mathbb{C} belongs to the Zygmund class ($f \in \Lambda_*$), or quasismooth class, if it is bounded and there exists a positive constant C such that

$$|f(z+h)+f(z-h)-2f(z)| \le C|h|$$
 (1.1)

for all $z, h \in \mathbb{C}$.

The boundedness of f and (1.1) imply the continuity of f. We define the Zygmund norm as $||f||_* = ||f||_{\infty} + ||f||_{\Lambda_*}$, where $||f||_{\Lambda_*}$ denotes the smallest constant C for which (1.1) holds.

We shall call a compact subset K in \mathbb{C} a removable set for the analytic functions of the Zygmund class (resp. Lipschitz class) provided that every function $f \in \Lambda_*$ (resp. $f \in \text{Lip}_{\alpha}$) that is analytic on $\mathbb{C} \setminus K$ has an analytic extension to the entire plane.

We recall the definition of Hausdorff measure. A measure function is an increasing continuous function h(t), $t \ge 0$, such that h(0) = 0. Let E be a bounded set, and for $0 < \delta \le \infty$ write

$$\Lambda_h^{\delta}(E) = \inf \left\{ \sum_{j=1}^{\infty} h(\operatorname{diam}(U_j)) : E \subset \bigcup_{j=1}^{\infty} U_j, \operatorname{diam}(U_j) \leq \delta \right\}.$$

Since $\Lambda_h^{\delta}(E)$ is a decreasing function of δ , the limit

$$\Lambda_h(E) = \lim_{\delta \to 0} \Lambda_h^{\delta}(E) = \sup_{\delta > 0} \Lambda_h^{\delta}(E)$$

exists; it is called the Hausdorff measure of E with respect to h. For instance, if $h(t) = t^{\alpha}$ for some $\alpha > 0$, then we will write Λ_{α} instead of Λ_h . We will denote by m the planar measure Λ_2 . If $\delta = \infty$, $\Lambda_h^{\infty} = M_h$ is called the Hausdorff content with respect to h. From the definitions it follows that $\Lambda_h(E) = 0$ if and only if $M_h(E) = 0$. See [2] for more information.

Dolzenko [1] proved that K is removable for the analytic functions of $\operatorname{Lip}_{\alpha}$ $(0 < \alpha < 1)$ if and only if $\Lambda_{1+\alpha}(K) = 0$. This result is also true for the extreme case $\alpha = 1$, as was proved by Uy [11]. The limit case $\alpha = 0$ corresponds

Received February 22, 1995. Revision received November 22, 1995.

This work is partially supported by grant PB92-08404-C02 of DGICYT (Spain). Michigan Math. J. 43 (1996).