The Pluri-Complex Green Function and a Covering Mapping

KAZUO AZUKAWA

1. Introduction

Myrberg [12] proved that, if M is a hyperbolic Riemann surface with the Green function $g^M(\cdot, p)$ with pole at $p \in M$ and if $\pi: E \to M$ is a covering mapping from the unit disk $E = \{\lambda \in \mathbb{C}; |\lambda| < 1\}$ in \mathbb{C} to M, then

$$g^{M}(q, p) = \sum_{j\geq 0} \log \left| \frac{1 - \bar{a}b_{j}}{b_{j} - a} \right|,$$

where $a \in \pi^{-1}(p)$ and $\{b_0, b_1, ...\} = \pi^{-1}(q)$.

In any complex manifold M, we can define the pluri-complex Green function $G_p^M(\cdot)$ with pole at $p \in M$ in such a manner that if M is a hyperbolic Riemann surface, the negative of $G_p^M(\cdot)$ is nothing other than the Green function on M with pole at p [9; 10; 11; 2; 3; 6; 8]. Since $b \mapsto \log|(1-\bar{a}b)/(b-a)|$ is the Green function on E with pole at $a \in E$, Myrberg's theorem is rewritten as follows:

$$G_p^M(q) = \sum_{j \ge 0} G_a^E(b_j),$$

where $a \in \pi^{-1}(p)$ and $\{b_0, b_1, ...\} = \pi^{-1}(q)$.

In this paper we shall show the following.

THEOREM A. Let $\pi: N \to M$ be a covering mapping from a complex manifold N to another one M. For $p, q \in M$, let $a \in \pi^{-1}(p)$ and $\{b_0, b_1, \ldots\} = \pi^{-1}(q)$. Then

$$G_p^M(q) \ge \sum_{i>0} G_a^N(b_i).$$

When the covering is regular, we have the following.

THEOREM B. Let $\pi: N \to M$ be a regular covering mapping from a complex manifold N to another one M. For $p, q \in M$, let $\{a = a_0, a_1, ...\} = \pi^{-1}(p)$ and $\{b = b_0, b_1, ...\} = \pi^{-1}(q)$. Then

$$G_p^M(q) \ge \sum_{j\ge 0} G_a^N(b_j) = \sum_{j\ge 0} G_{a_j}^N(b).$$

Received June 3, 1994. Revision received March 9, 1995.

The author was partially supported by a Research Fellowship in 1993 from the Ministry of Education, Science and Culture, Japan.

Michigan Math. J. 42 (1995).