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1. Introduction

The main result of this paper is the explicit determination of the core of
integrally closed ideals in 2-dimensional regular local rings. The core of an
ideal 7 in a ring R was introduced by Judith Sally in the late 1980s and was
alluded to in Rees and Sally’s paper [RS]. Recall that a reduction of 7 is any
ideal J for which there exists an integer » such that JI" =J"*! [NR]. In
other words, J is a reduction of 7 if and only if I is integrally dependent on
J. An ideal is integrally closed if it is not a reduction of any ideal properly
containing it.

(1.1) DerINITION. The core of an ideal 7, denoted core([/), is the intersec-
tion of all reductions of 1.

In general, the core seems extremely difficult to determine and there are few
computed examples. A priori, it is not clear whether it is zero. However, one
can show that, in general, the core always contains a power of 1. A proof of
this for Buchsbaum rings can be found in [Tr, Prop. 5.1]. )

It is quite natural to study the core, partly due to the theorem of Briangon
and Skoda (see [BS; LS; LT; L4; HH; RS; Sa; AH1; AH2; AHT]). A simple
version of this theorem states that if R is a d-dimensional regular ring and
I is any ideal of R, then the integral closure of I¢ is contained in I. In par-
ticular, the integral closure of I is contained in core([). It is an important
question to understand how the core of 7 relates to I. More generally, we are
interested in approximating general m-primary ideals in local rings (R, m)
by intersections of parameter ideals. We hope our results in dimension 2 will
provide insight into the nature of the core in higher dimensions.

Some of the open questions regarding the core are as follows.

(a) If I is integrally closed, is core(/) also integrally closed?

(b) If the completion R of R is equidimensional, does core(/)R equal
core(/)? More generally, how does the core behave under faithfully
flat maps?
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