The Dirichlet Problem for the Complex Monge-Ampère Operator: Perron Classes and Rotation-Invariant Measures

Urban Cegrell¹ & Sławomir Kołodziej²

0. Introduction

Let Ω be an open and bounded subset of \mathbb{C}^n . If $u_j \in C^2(\Omega)$, $1 \le j \le n$, then the Monge-Ampère operator $(dd^c)^n = dd^c u_1 \wedge \cdots \wedge dd^c u_n$ operates on (u_1, \ldots, u_n) , where $d = \partial + \bar{\partial}$ and $d^c = i(\bar{\partial} - \partial)$. This operator is of great importance in pluripotential theory. It was shown in [3] that $(dd^c)^n$ is well-defined and nonnegative on PSH $\cap L^{\infty}_{loc}$. In this paper, we will study the following Dirichlet problem.

Let Ω be an open, bounded, and strictly pseudoconvex subset of \mathbb{C}^n , let φ be in $C(\partial\Omega)$, and let μ be a positive measure on Ω . Consider the problem:

$$\begin{cases} u \in \mathrm{PSH} \cap L^{\infty}(\Omega), \\ (dd^{c}u)^{n} = \mu \text{ on } \Omega \\ \overline{\lim}_{z \to \xi} u(z) = \varphi(\xi) \ \forall \xi \in \partial \Omega. \end{cases}$$
 (i)

There are measures for which (i) has no solution. For if (i) can be solved with μ , then μ cannot have mass on any pluripolar set. Thus, for example, if we take μ to be the Dirac measure for a point in Ω then (i) has no solution. On the other hand, if $\mu = fdV$ where $f \in C(\overline{\Omega})$ and dV is Lebesgue measure, then it was proved in [2] that (i) has a unique solution for every $\varphi \in C(\partial \Omega)$. This was generalized in [5] to the case when $f \in L^{\infty}(\Omega, \mu)$ and in [7] to the case when $f \in L^{2}(\Omega, dV)$. The main result of this paper is the following. Let ν be any positive rotation invariant measure in the unit ball B for which there is a $u \in PSH \cap L^{\infty}(B)$ with $(dd^{c}u)^{n} \geq \nu$. (These measures can be characterized; cf. [11].) Then, for every $f \in L^{\infty}(B, \nu)$ and for every $\varphi \in C(\partial B)$, there is a unique solution to (i) with $\mu = fd\nu$. For background and references see [1; 6; 10].

1. Perron Classes

To study the problem (i), we use the Perron method and therefore consider classes of subsolutions

Received October 6, 1993. Revision received January 28, 1994.

¹ Partially supported by the Swedish Natural Science Research Council.

² Partially supported by grant no. 2 1077 91 from the State Committee for Scientific Research (Poland).

Michigan Math. J. 41 (1994).