Geometry of Operator Spaces

Å. LIMA, E. OJA, T. S. S. R. K. RAO,*
& D. WERNER

1. Introduction

The results in this paper aim at giving information on the position of K(X, Y), the space of compact linear operators between Banach spaces X and Y, in L(X, Y), the space of bounded linear operators.

It is known that for a number of spaces, for example $X = l^p$ and $Y = l^q$ $(1 < p, q < \infty)$, K(X, Y) is an M-ideal in L(X, Y) (the definition of an M-ideal is given in Section 2); thus the position of K(X, Y) in L(X, Y) vaguely resembles the position of c_0 in l^∞ in this case. We show in Section 2 that, in several instances, a necessary condition for K(X, Y) to be an M-ideal in L(X, Y) is that $K(l^1, Y)$ be an M-ideal in $L(l^1, Y)$; and we go on to investigate those Banach spaces Y for which the latter holds. We prove that such a space is a nonreflexive (unless finite-dimensional) Asplund space; in fact, it is even an M-ideal in its bidual. For the proof of the latter assertion we offer a characterization of M-ideals X in X^{**} which yields in particular that this property is separably determined. Moreover, we prove for a separable space with the metric compact approximation property that $K(l^1, Y)$ is an M-ideal in $L(l^1, Y)$ if and only if K(X, Y) is an M-ideal in L(X, Y) for every Banach space X. This class of Banach spaces, called (M_∞) -spaces in [29], was introduced and investigated in [30].

Section 3 deals with the problem of unique Hahn-Banach extensions from K(X, Y) to L(X, Y). The results in this section are motivated by two recent results. For a certain class of Banach spaces X that includes the l^p (1 spaces, it is proved in [29] that for any Banach space <math>Y, every continuous linear functional on K(X, Y) has a unique norm-preserving extension to a linear functional on L(X, Y). On the other hand, one of us [24] has recently shown that if X is a denting point of the unit ball X_1 of X and Y^* is a W^* -denting point of Y_1^* then the functional $X \otimes Y^*$ has unique norm-preserving extension from R(X, Y), the space of finite rank operators, to L(X, Y).

We study the properties of a Banach space X for which, for a compact Hausdorff space Ω , extreme points in the unit ball of $K(X, C(\Omega))^*$ have unique

Received March 17, 1993. Revision received May 25, 1994.

^{*} Work done under a bursary from the Commission of the European Communities. Michigan Math. J. 41 (1994).