A Characterization of Domains Quasiconformally Equivalent to the Unit Ball ## NATHAN SODERBORG A difficult problem in the theory of quasiconformal mappings is the characterization of domains in Euclidean n-space that can be mapped quasiconformally onto the unit ball \mathbf{B}^n . It is a type of n-dimensional Riemann mapping problem. Gehring [Ge] reduced the problem for a domain to a problem for its boundary. He showed that if a quasiconformal mapping exists from a neighborhood of a domain's boundary onto a neighborhood in \mathbf{B}^n of \mathbf{S}^{n-1} , then a quasiconformal mapping exists between the domain and \mathbf{B}^n . But unlike the Riemann mapping theorem (which solves the problem for n=2), no conditions pertaining solely to the boundary have been discovered which guarantee a domain's quasiconformal equivalence to \mathbf{B}^n . Nakai [N1] established an implicit characterization of quasiconformally equivalent domains in terms of function algebras by showing that a quasiconformal mapping exists between two domains in \mathbb{R}^2 if and only if their corresponding Royden algebras are isomorphic. Lewis [Le] and Lelong-Ferrand [L-F] extended his proof to higher dimensions and Riemannian manifolds. The work of Nakai and Lewis relies on methods of functional analysis to characterize the maximal ideal space of a domain Ω as a compactification Ω^* of Ω . Lewis showed that a quasiconformal mapping between two domains implies that these so-called *Royden compactifications* are homeomorphic. The converse question—whether a homeomorphism between Royden compactifications implies existence of a quasiconformal mapping between domains—is the subject of this paper. Nakai [N2] answered the question affirmatively for the 2-dimensional case, and gave a partial answer for higher dimensions by showing [NT] that the restriction of a homeomorphism between Royden compactifications to their underlying domains is quasiconformal in a neighborhood of the boundary. A connection between this result and the theorem of Gehring has not been previously observed in the literature. However, if one of the domains is \mathbf{B}^n , then the result of Nakai and Tanaka dovetails nicely with Gehring's theorem to prove that the converse question can be answered affirmatively. Hence, a domain Ω is quasiconformally equivalent to \mathbf{B}^n if and only if Ω^* is