Unimodular Wavelets for L^2 and the Hardy Space H^2

Young-Hwa Ha, Hyeonbae Kang, JUNGSEOB LEE, & JIN KEUN SEO

1. Introduction

In this paper we construct a family of wavelets ψ for L^2 and the Hardy space H^2 with the property that $|\hat{\psi}(\xi)| = 1$ for ξ in the support of $\hat{\psi}$. One of the wavelets constructed is the well-known Journé-Meyer example. We also include a proof of the equivalence of Meyer's equations and wavelet conditions.

Let $\psi \in L^2(\mathbf{R})$ and let, for $j, k \in \mathbf{Z}$,

$$\psi_{j,k}(x) = 2^{j/2}\psi(2^{j}x - k).$$

Let H be a Hilbert subspace of $L^2(\mathbf{R})$. The function $\psi \in H$ is called a wavelet for H if $\{\psi_{j,k}\}_{j,k\in\mathbb{Z}}$ forms an orthonormal basis for H; $\{\psi_{j,k}\}$ is called a wavelet basis.

There are essentially two methods of constructing wavelets. The first is based on the following equations (W1)-(W4): $\psi \in L^2$ is a wavelet for $L^2(\mathbf{R})$ if and only if ψ satisfies

- (W1) $\sum_{k \in \mathbb{Z}} |\hat{\psi}(\xi + 2k\pi)|^2 = 1$, (W2) $\sum_{k \in \mathbb{Z}} \hat{\psi}(\xi + 2k\pi) \hat{\psi}^* (2^j (\xi + 2k\pi)) = 0$ for $j \ge 1$, (W3) $\sum_{j \in \mathbb{Z}} |\hat{\psi}(2^{-j}\xi)|^2 = 1$, and (W4) $\sum_{l \ge 0} \hat{\psi}(2^l (\xi + 2p_0\pi)) \hat{\psi}^* (2^l \xi) = 0$ for $p_0 \in 2\mathbb{Z} + 1$.

Here, $\hat{\psi}^*$ is the complex conjugate of $\hat{\psi}$. This equivalence appears in [Le] and is attributed to Y. Meyer. However, no proof of it seems available, so we give a complete proof in this paper.

The second method of constructing wavelets is based on the pairing of wavelets and multiresolution analysis (MRA) [Me, D2]. An increasing sequence $\{V_i\}$ of closed subspaces of $L^2(\mathbf{R})$ is called an MRA of $L^2(\mathbf{R})$ if the following hold:

- (R1) $\bigcap_{j \in \mathbb{Z}} V_j = \{0\}$ and $\overline{\bigcup_{j \in \mathbb{Z}} V_j} = L^2(\mathbb{R})$, (R2) $f(x) \in V_j$ if and only if $f(2^{-j}x) \in V_0$,

Received December 1, 1992. Revision received July 27, 1993.

The first author is supported in part by a grant from the Korea Science and Research Foundation. The third author is supported in part by Ajou University Research Fund. The second and fourth authors are partly supported by GARC-KOSEF and Non-Directed Research Fund, Korea Research Foundation, 1992.

Michigan Math. J. 41 (1994).