A Fibered Polynomial Hull without an Analytic Selection

J. WILLIAM HELTON & ORLANDO MERINO

This note shows that certain polynomial hulls in \mathbb{C}^3 have no analytic selection, thus settling a standing question about such hulls.

Recall that the *polynomial hull* $\mathcal{O}(S)$ of a set S in \mathbb{C}^{M} is the set

$$\mathcal{O}(S) = \{ w \in \mathbb{C}^M : |p(w)| \le \max_{v \in S} |p(v)| \text{ for all polynomials } p \text{ on } \mathbb{C}^M \}.$$

We shall be considering sets S in \mathbb{C}^{1+N} that are fibered over the unit circle $\partial \mathbf{D}$ in \mathbb{C} the complex plane. Thus S has the form

$$\{(e^{i\theta}, \mathbb{S}_{\theta}): 0 \leq \theta \leq 2\pi\},$$

where each S_{θ} is a subset of \mathbb{C}^{N} . Let \mathbb{D} denote the unit disk in the complex plane and let H_{N}^{∞} denote the \mathbb{C}^{N} -valued functions bounded and analytic on \mathbb{D} . Clearly (from the maximum principle) if f is any H_{N}^{∞} function satisfying

$$f(e^{i\theta}) \in \mathbb{S}_{\theta}$$
 for almost all θ ,

then the graph $\{z, f(z)\}$: $z \in \mathbf{D}$ of f lies in $\mathcal{O}(S)$. Such a function f is called an *analytic selection* of $\mathcal{O}(S)$. A significant question about polynomial hulls is which hulls have analytic selections.

An obvious necessary condition is that $\mathcal{O}(S)$ in \mathbb{C}^{1+N} be a set whose projection onto the first coordinate is a set containing \mathbb{D} . We shall refer to such $\mathcal{O}(S)$ as having nontrivial fiber over the unit disk. Also, if the S_{θ} are not connected then it is easy to make up examples where $\mathcal{O}(S)$ has no analytic selection.

QUESTION (Q). Are these conditions sufficient for $\mathcal{O}(S)$ to have an analytic selection?

By giving a highly pathological example (for N=1), Wermer [Wr] showed that in general the answer is No. However, when the S_{θ} are nicely behaved the story is different. For N=1 Slodkowski [Sl] and independently Wegert [Wg] and Helton-Marshall [HM] showed that the answer is Yes. This article gives a simple very well-behaved S in \mathbb{C}^3 for which the answer to (Q) is No.

Now we write down the S that provides our example. Write \mathbb{C}^2 as $\{z = (x_1, y_1, x_2, y_2) = (z_1, z_2)\}$. Let \mathbb{C} denote the semicircle