On the Darboux-Picard Theorem in \mathbb{C}^n

So-Chin Chen

I. Introduction

In one complex variable we have the following Darboux-Picard theorem.

THEOREM. Let D be an open disc, and let $f: \overline{D} \to \mathbb{C}$ be continuous and satisfy:

- (i) f is holomorphic in D, and
- (ii) f is one-to-one on bD.

Then f is one-to-one throughout \overline{D} and f(D) is the inside of the Jordan curve f(bD).

For a proof see, for instance, Burckel [1, p. 310].

In this note we will show that the same result still holds if D is sitting in \mathbb{C}^n for $n \ge 2$. But first, a simple example shows that if we map the unit disc in \mathbb{C} into some \mathbb{C}^n with n > 1, then in general the conclusion does not hold.

EXAMPLE. Let U be the unit disc in \mathbb{C} . Define $G: \overline{U} \to \mathbb{C}^2$ by

$$z \mapsto (z(z-\frac{1}{2})(z+\frac{1}{2}), 2(z-\frac{1}{2})(z+\frac{1}{2})).$$

Then we have $G(\frac{1}{2}) = G(-\frac{1}{2}) = (0, 0)$ and G is one-to-one on bU.

Here is our main result.

MAIN THEOREM. Let $D \subseteq \mathbb{C}^n$, $n \ge 2$, be a bounded domain with bD homeomorphic to S^{2n-1} , and let $f = (f_1, ..., f_n) : \overline{D} \to \mathbb{C}^n$ be a mapping such that $f_j \in H(D) \cap C^0(\overline{D})$ for j = 1, ..., n. Suppose that f is one-to-one on bD; then f is one-to-one throughout \overline{D} .

Some related problems were considered in Globevnik and Stout [2].

The author would like to thank R. M. Range and S. Plotnick for help-ful discussions and to thank S. Bell for bringing the reference [5] to his attention.

Received May 6, 1992.

Research partially supported by a FRAP grant from SUNY at Albany. Michigan Math. J. 40 (1993).