Extensions of Complex Varieties across C^1 Manifolds

YEREN XU

Introduction

More than twenty years ago, Shiffman [Sh] proved that a closed subset E in an open set $\Omega \subset \mathbb{C}^n$ with zero (2k-1)-dimensional Hausdorff measure does not obstruct complex varieties, in the sense that if V is a k-dimensional complex variety in $\Omega \setminus E$ and if \overline{V} is the closure of V in Ω , then $\overline{V} \cap \Omega$ is also a k-dimensional complex variety in Ω . Intuitively speaking, the set E is too small to obstruct the variety V, since the topological dimensional of E does not exceed 2k-2 while the boundary of V has dimension less than or equal to 2k-1. Later on, Alexander [A] and Becker [Be] considered the case when E is a real-analytic set with dimension as large as 2k-1 but, in addition, V has certain symmetric properties. In this paper, we consider the following problem: If E does not obstruct the variety V topologically (for the precise definition see 1.5 below), is it necessary that $\bar{V} \cap \Omega$ also be a complex variety? We give an affirmative answer to this question when E is a (2k-1)-dimensional C^1 manifold. In a subsequent paper we will show that the same conclusion holds when E is either a rectifiable curve or a high-dimensional rectifiable set subject to certain requirements. For a general closed set E, the problem is far from being solved.

The author would like to express his appreciation to Professors Stout and Chirka for their advice.

1. Basic Definitions and Main Result

We start with some basic definitions and properties of analytic varieties.

Suppose that Ω is an open subset in \mathbb{C}^n . A subset V of Ω is a complex analytic variety if, for each point p in Ω , there exists a neighborhood U of p and a family of functions that are holomorphic in U such that $V \cap U$ is the set of common zeros for the functions in the family.

A complex variety V is called *irreducible* if it cannot be decomposed as $V = V_1 \cup V_2$, where V_i are two distinct proper subvarieties of V. A variety is irreducible if and only if the set of its regular points, $V_{\text{reg}} = V - V_{\text{sing}}$, is a connected set. The irreducible components of the variety V are the sets \overline{W}_i , where the sets $\{W_i\}$ are the connected components of V_{reg} .