Convexity and the Schwarz-Christoffel Mapping

WILFRED KAPLAN

1. Introduction

In 1952 the author wrote an article [2] on close-to-convex functions. The present paper shows how additional conclusions about univalent functions can be obtained from the results and methods in [2]. We also provide a new proof of the main result of [2] with the aid of the support angle function of Study.

For a discussion of close-to-convex functions one is referred to [1], especially pages 46-51. We recall that a function f(z) analytic in the unit disc Δ is called *close-to-convex* if $\text{Re}(f'(z)/\phi'(z)) > 0$ for some convex function $\phi(z)$ in Δ . Every close-to-convex function is necessarily univalent.

In [2], the following theorem is proved:

THEOREM A. Let f(z) be locally univalent in Δ . Then f is close-to-convex in Δ if and only if

$$\int_{\theta_1}^{\theta_2} \operatorname{Re}\left\{1 + z \frac{f''(z)}{f'(z)}\right\} d\theta > -\pi, \quad z = re^{i\theta}, \tag{1}$$

for each r, 0 < r < 1, and each pair of real numbers θ_1 , θ_2 with $\theta_1 < \theta_2$.

From Theorem 3 of [2], one deduces the following theorem.

THEOREM B. If $f(z) \neq constant$ is analytic in Δ and continuous on $\overline{\Delta}$ and u = Re[f(z)] is monotone nondecreasing as z moves around $\partial \Delta$ from z_0 to $z_1 \neq z_0$ in the positive direction and monotone nonincreasing as z moves around $\partial \Delta$ from z_1 to z_0 in the positive direction, then f is close-to-convex in Δ .

2. The Support Angle Function

A basic tool will be the support angle function (Stützwinkelfunktion) introduced by Study [4, p. 89]. If f is analytic in Δ and locally univalent, then for the disc $|z| \le \rho < 1$ (0 < $\rho < 1$), a support angle function is

$$S_{f,\rho}(\theta) = p_f(\rho,\theta) + \theta, \quad -\infty < \theta < \infty,$$
 (2)