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1. Introduction

The main purpose of this note is to provide an improvement of Vinogradov’s
mean value theorem which may be of use in multiplicative number theory.
Let J; x(P) denote the number of solutions of the simultaneous diophantine
equations
S - -
(1) 2(x/-y)=0 (1=j=<k)
i=1

with 1 < Xx;, y; <P for 1 =i <s. On writing

) fa;0)= 3 elayx+azx?+--+ax"),
x=Q
in which e(«) denotes e2™**, we observe that
3) JoPy=\ _|f(a; P)*da,
T

where T* denotes the k-dimensional unit cube and = (o, .oy 0). Esti-
mates for the mean value (3) were first investigated by Vinogradov, and are
now known collectively as Vinogradov’s mean value theorem. These esti-
mates have found varied uses in both additive and multiplicative number
theory.

Modern bounds for J; ,(P) take the form

) T, k(P) < D(k, r) P2 =3kt DEntn ) (p e N),
where D(k, r) is independent of P, and
(5) n(r, k) =Lk2(1-1/k)".

The most general bound currently in the literature appears to be due to
Stechkin [5], who showed that when £ =2 the bound (4) holds with (5) for
each PeR" and r e N, with

(6) D(k, ry=exp(C min{r, k}k?log k)

and C an absolute constant. The explicit nature of the constant (6) is of im-
portance when it comes to obtaining zero-free regions for the Riemann zeta
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