On Vinogradov's Mean Value Theorem, II

TREVOR D. WOOLEY

1. Introduction

The main purpose of this note is to provide an improvement of Vinogradov's mean value theorem which may be of use in multiplicative number theory. Let $J_{s,k}(P)$ denote the number of solutions of the simultaneous diophantine equations

(1)
$$\sum_{i=1}^{s} (x_i^j - y_i^j) = 0 \quad (1 \le j \le k)$$

with $1 \le x_i$, $y_i \le P$ for $1 \le i \le s$. On writing

(2)
$$f(\underline{\alpha}; Q) = \sum_{x \leq Q} e(\alpha_1 x + \alpha_2 x^2 + \dots + \alpha_k x^k),$$

in which $e(\alpha)$ denotes $e^{2\pi i\alpha}$, we observe that

(3)
$$J_{s,k}(P) = \int_{\mathbf{T}^k} |f(\underline{\alpha}; P)|^{2s} d\underline{\alpha},$$

where \mathbf{T}^k denotes the k-dimensional unit cube and $\underline{\alpha} = (\alpha_1, ..., \alpha_k)$. Estimates for the mean value (3) were first investigated by Vinogradov, and are now known collectively as *Vinogradov's mean value theorem*. These estimates have found varied uses in both additive and multiplicative number theory.

Modern bounds for $J_{s,k}(P)$ take the form

(4)
$$J_{rk,k}(P) \leq D(k,r)P^{2rk-\frac{1}{2}k(k+1)+\eta(r,k)} \quad (r \in \mathbb{N}),$$

where D(k, r) is independent of P, and

(5)
$$\eta(r,k) = \frac{1}{2}k^2(1-1/k)^r.$$

The most general bound currently in the literature appears to be due to Stechkin [5], who showed that when $k \ge 2$ the bound (4) holds with (5) for each $P \in \mathbb{R}^+$ and $r \in \mathbb{N}$, with

(6)
$$D(k,r) = \exp(C \min\{r,k\}k^2 \log k)$$

and C an absolute constant. The explicit nature of the constant (6) is of importance when it comes to obtaining zero-free regions for the Riemann zeta