Geodesic Excursions into Cusps in Finite-Volume Hyperbolic Manifolds

María V. Melián & Domingo Pestana

0. Introduction

Throughout, \mathfrak{M}^{d+1} will be a fixed, complete, noncompact Riemannian manifold of constant negative sectional curvature and finite volume. Given a point p on \mathfrak{M} , we denote by S(p) the unit ball of the tangent space of \mathfrak{M} at p, and for every $v \in S(p)$ let $\gamma_v(t)$ be the geodesic emanating from p in the direction v. In this paper, we study the long time behaviour of $\gamma_v(t)$.

Sullivan proved in [S] that for almost every direction $v \in S(p)$, one has

$$\limsup_{t\to\infty}\frac{\operatorname{dist}(\gamma_v(t),p)}{\log t}=\frac{1}{d},$$

where dist is the distance in \mathfrak{M} . On the other hand, for just a countable number of directions $v \in S(p)$,

$$\limsup_{t\to\infty}\frac{\operatorname{dist}(\gamma_v(t),p)}{t}=1.$$

We give a result interpolating between these two.

THEOREM 1. For $0 \le \alpha \le 1$,

$$\operatorname{Dim}\left\{v : \limsup_{t \to \infty} \frac{\operatorname{dist}(\gamma_v(t), p)}{t} \ge \alpha\right\} = d(1 - \alpha).$$

Here and hereafter, Dim denotes Hausdorff dimension. Dimension refers here to the induced distance in S(p). Also, we will use the notation M_{α} for α -dimensional content. We refer to [C] or [R] for definitions and background on these metrical notions.

Let \mathbf{H}^{d+1} be the upper half plane of \mathbf{R}^{d+1} .

$$\mathbf{H}^{d+1} = \{(x_1, \dots, x_{d+1}) \in \mathbf{R}^{d+1} : x_{d+1} > 0\},\$$

and let λ be the hyperbolic metric in \mathbf{H}^{d+1} .

$$d\lambda = \frac{|dx|}{x_{d+1}}.$$

Received January 3, 1991. Revision received October 21, 1992.

Research supported by a grant from CICYT, Ministerio de Educación y Ciencia, Spain.

Michigan Math. J. 40 (1993).