A Conjecture of L. Carleson and Applications

ALEXANDRU ALEMAN

1. Introduction

Let m be the area measure on C. For a meromorphic function f in the unit disc U, let

(1.1)
$$A(r,f) = \int_{\{|z| \le r\}} \frac{|f'|^2}{(1+|f|^2)^2} dm, \quad 0 \le r < 1,$$

be the spherical area of the image of $\{|z| \le r\}$ by f, counting multiplicities. In his thesis Carleson [6] considered the classes T_{α} , $0 \le \alpha < 1$, of meromorphic functions f in U satisfying

(1.2)
$$|f|_{\alpha} = \int_0^1 A(r, f) (1-r)^{-\alpha} dr < \infty,$$

and the class T_1 of meromorphic functions f in U with the property that A(r, f) remains bounded when r tends to 1, that is,

(1.3)
$$|f|_1 = \sup_{r < 1} A(r, f) < \infty.$$

We obviously have $T_1 \subset T_\alpha \subset T_\beta \subset T_0$ for all $\alpha, \beta \in (0,1)$ with $\alpha > \beta$. The class T_0 coincides with the class of functions with bounded characteristic, and a well-known theorem of F. and R. Nevanlinna asserts that each $f \in T_0$ is the quotient of two bounded analytic functions in U. In [6, p. 39] Carleson proved an analogue of this theorem for the classes T_α just defined, namely, the fact that each function in T_α is the quotient of two bounded functions, each of which is in T_β for all $\beta < \alpha$, and conjectured that one cannot take $\beta = \alpha$, that is, not every function in T_α is the quotient of two bounded functions in T_α . For all $\alpha \in [0,1]$, T_α contains the weighted Dirichlet space $D_{1-\alpha}$ of analytic functions f in U satisfying

(1.4)
$$\int_{U} |f'(z)|^{2} (1-|z|)^{1-\alpha} dm < \infty$$

Recently, in their paper [11] on invariant subspaces of the multiplication operator on the Dirichlet space D_0 , Richter and Shields found a partial "negative" answer to Carleson's conjecture for $\alpha = 1$ by showing that every function in