Isomorphic Operator Algebras and Conjugate Inner Functions

T. B. HOOVER

I. Introduction

Let D denote the open unit disk in the complex plane, $D = \{z : |z| < 1\}$, and let m be normalized arclength measure on the boundary ∂D of D. If ϕ is a nonconstant inner function on D, then $C = C_{\phi}$ denotes the composition operator on $H^2 = H^2(D)$ determined by $\phi - C_{\phi}(f) = f \circ \phi$. Here \circ denotes function composition. That C_{ϕ} is bounded is proven in [7; 8]. The operator C_{ϕ} does not tell everything about the analytic function ϕ . Indeed, if e_n is the function $e_n(z) = z^n$, then $C_{e_n}(e_m) = e_{nm}$ so that, for n > 1, C_{e_n} is the direct sum of a 1-dimensional identity operator and a pure isometry of infinite multiplicity. As such, they are all unitarily equivalent to each other. On the other hand, e_n covers the disk n times so that these functions are not the same.

Each f in H^{∞} defines the analytic Toeplitz operator T_f on H^2 by $T_f(h) = fh$. Let $\mathbf{A} = \mathbf{A}_{\phi}$ denote the norm closed algebra generated by C_{ϕ} and all the analytic Toeplitz operators. Note that $C_{\phi}T_f = T_{f \circ \phi}C_{\phi}$, so that \mathbf{A} is commutative just in case ϕ is the identity function $\phi(z) = z$. From here on, the same notation will be used to denote the H^{∞} function, its boundary function, its Toeplitz operator, and even its Gelfand transform. This convention is convenient and will cause no confusion.

Two inner functions ϕ and ψ are conjugate if there is an analytic homeomorphism τ of D satisfying $\tau \circ \psi = \phi \circ \tau$. We prove the following:

THEOREM 1. If ϕ and ψ are nonconstant, nonperiodic inner functions, then they are conjugate if and only if the algebras \mathbf{A}_{ϕ} and \mathbf{A}_{ψ} are isomorphic.

Here, ϕ is periodic if $\phi^{(n)}(z) = z$, where $\phi^{(n)}$ denotes the *n*-fold iterate of ϕ . The analytic homeomorphisms of D are the Möbius transformations

$$\tau(z) = c \frac{z - a}{1 - \bar{a}z},$$

where |a|<1 and |c|=1. Theorem 1 is just the analytic version of what is done in [1; 2; 4; 5] for composition operators on L^2 spaces.

If τ is a homeomorphism as in the theorem, then $C_{\tau}C_{\phi}C_{\tau}^{-1}=C_{\psi}$ and $C_{\tau}fC_{\tau}^{-1}=f\circ\tau$, so that the map $\Gamma(a)=C_{\tau}aC_{\tau}^{-1}$ is an isomorphism of \mathbf{A}_{ϕ}

Received July 23, 1990. Revision received July 3, 1991. Michigan Math. J. 39 (1992).