Interpolating Blaschke Products and Factorization in Douglas Algebras

PAMELA GORKIN¹ & RAYMOND MORTINI²

Introduction

The following problem of Guillory, Izuchi, and Sarason is proven: Let B be a Douglas algebra and let u be a unimodular function in B which does not vanish identically on any nontrivial Gleason part in B. If q is a function in B whose zero set contains that of u, then u divides q^N for some $N \in \mathbb{N}$. By using function-theoretic methods we shall also generalize a recent theorem of Tolokonnikov on zero sets of ideals in H^{∞} .

Let H^{∞} be the Banach algebra of all bounded analytic functions in the open unit disk $\mathbf{D} = \{z \in \mathbb{C} : |z| < 1\}$ and let $M(H^{\infty})$ denote its maximal ideal space. For $m, x \in M(H^{\infty})$, let $\rho(m, x) = \sup\{|f(x)| : f(m) = 0, ||f|| = 1\}$ denote the pseudohyperbolic distance of the points m and x in $M(H^{\infty})$. By Schwarz-Pick's lemma, $\rho(z, w) = |(z-w)/(1-\overline{z}w)|$ if $z, w \in \mathbb{D}$. Let

$$P(m) = \{x \in M(H^{\infty}): \rho(m, x) < 1\}$$

be the Gleason part of $m \in M(H^{\infty})$. Defining m to be equivalent to x, $m \sim x$, if $\rho(m, x) < 1$ then one can show [4, p. 402] that \sim is an equivalence relation in $M(H^{\infty})$. Thus the Gleason parts of two points are either disjoint or equal.

A Gleason part P is called an *analytic disk* if there exists a continuous, bijective map L of \mathbf{D} onto P such that $\hat{f} \circ L$ is analytic in \mathbf{D} for every $f \in H^{\infty}$, where \hat{f} denotes the Gelfand transform of $f \in H^{\infty}$.

In his famous paper [8], Hoffman showed that any Gleason part P(m) in $M(H^{\infty})$ is either a single point or an analytic disk. Moreover, the latter occurs if and only if $m \in \mathbf{D}$ or lies in the (weak-*-) closure of an interpolating sequence in \mathbf{D} , that is, in the closure of a sequence $\{z_n\}$ satisfying

$$\inf_{\substack{m \in \mathbb{N} \\ n \neq m}} \prod_{\substack{n \in \mathbb{N} \\ n \neq m}} \rho(z_n, z_m) \ge \delta > 0.$$

This leads us to the following definition.

Received March 19, 1990.

¹ Research supported by an NSF grant.

² Research supported by Villa's professorship and by the Graduate School of the University of Wisconsin (Madison).

Michigan Math. J. 38 (1991).