Semicocycles and Weighted Composition Semigroups on H^p

WOLFGANG KÖNIG

1. Introduction

We consider semigroups $(T_t)_{t\geq 0}$ on the Hardy space H^p of the unit disc **D**, which are of the form

(1.1)
$$T_t: H^p \to H^p$$
, $T_t f(z) = h_t(z) f(\Phi_t(z))$ $(t \ge 0, f \in H^p, z \in \mathbf{D})$

with suitable analytic functions $\Phi_t : \mathbf{D} \to \mathbf{D}$ and $h_t : \mathbf{D} \to \mathbf{C}$. We suppose that $(\Phi_t)_{t \geq 0}$ is a semiflow (sometimes called semigroup) of analytic functions; that is, the mapping $t \mapsto \Phi_t(z)$ is continuous for every $z \in \mathbf{D}$, $\Phi_0(z) \equiv z$ and $\Phi_{t+s}(z) = \Phi_t(\Phi_s(z))$ for all $z \in \mathbf{D}$ and $t, s \in [0, \infty)$. An application of Vitali's theorem shows the joint continuity of the mapping $(z, t) \mapsto \Phi_t(z)$. We often write Φ instead of $(\Phi_t)_{t \geq 0}$. Semiflows are studied very comprehensively by Berkson and Porta [1].

In this paper we discuss the manner in which properties of semigroups $(T_t)_{t\geq 0}$ of the form (1.1) are related to the properties of the functions h_t .

DEFINITION 1. Let Φ be a semiflow. A family $(h_t)_{t\geq 0}$ of analytic functions $h_t: \mathbf{D} \to \mathbf{C}$ is called a *semicocycle for* Φ if

- (i) the mapping $t \mapsto h_t(z)$ is continuous for every $z \in \mathbf{D}$,
- (ii) $h_{t+s} = h_t \cdot (h_s \circ \Phi_t)$ for $t, s \ge 0$, and
- (iii) $h_0 \equiv 1$.

 $(h_t)_{t\geq 0}$ is said to be

continuous, if the mapping $(t, z) \mapsto h_t(z)$ is continuous, differentiable, if for every $z \in \mathbf{D}$ the mapping $t \mapsto h_t(z)$ is differentiable, and

bounded, if every h_t is bounded $(t \ge 0)$.

By using Vitali's theorem one can show that a bounded semicocycle is continuous. If Φ is a semiflow and $(h_t)_{t\geq 0}$ a bounded semicocycle for Φ , then the family $(T_t)_{t\geq 0}$, given by (1.1), is a semigroup of bounded linear operators on H^p .

Let $\omega : \mathbf{D} \to \mathbf{C}$ be an analytic function satisfying $\omega \neq 0$. If all zeros of ω are in the set $\{z \in \mathbf{D} : \Phi_t(z) = z \text{ for all } t \in [0, \infty)\}$ of fixed points of Φ , then

Received October 11, 1989. Revision received March 8, 1990. Michigan Math. J. 37 (1990).