Moduli Spaces of Polynomial Minimal Immersions between Complex Projective Spaces

G. TOTH

1. Introduction and Preliminaries

In [1; 6] Do Carmo and Wallach showed that the space of full k-homogeneous polynomial minimal immersions of the m-sphere S^m into any n-sphere S^n (for various n) can be parametrized by a compact convex body lying in a finite-dimensional vector space. They also gave a lower bound for the dimension in terms of m and k. The objective of this note is to construct Do Carmo-Wallach type moduli spaces of (homotopically nontrivial) minimal immersions between complex projective spaces. More precisely, for $m \ge 2$ and $p > q \ge 0$, we consider $\mathfrak{K}^{p,q} = \mathfrak{K}^{p,q}_{m+1}$, the complex vector space of harmonic polynomials on \mathbb{C}^{m+1} of degree p in $z_0, \ldots, z_m \in \mathbb{C}$ and degree q in $\overline{z}_0, \ldots, \overline{z}_m \in \mathbb{C}$. An element of $\mathfrak{K}^{p,q}$ is completely determined by its restriction to the unit sphere $S^{2m+1} \subset \mathbb{C}^{m+1}$. A map $f: S^{2m+1} \to S^{2n+1}$ between the unit spheres of \mathbb{C}^{m+1} and \mathbb{C}^{n+1} is said to be a polynomial map of bidegree (p,q) if the coordinates of f belong to $\mathfrak{K}^{p,q}$. In this case, as $\mathfrak{K}^{p,q}$ consists of (complex-valued) spherical harmonics, f is a harmonic map in the sense of Eells and Sampson [2; 3]. There are three immediate consequences of homogeneity:

- (1) f factors through the Hopf bundle maps $\pi: S^{2m+1} \to \mathbb{C}P^m$ and $\pi: S^{2n+1} \to \mathbb{C}P^n$ inducing a map $F: \mathbb{C}P^m \to \mathbb{C}P^n$;
- (2) F pulls back the canonical line bundle of $\mathbb{C}P^n$ to the (p-q)th power of that of $\mathbb{C}P^m$, in particular, F has degree p-q>0 (on second cohomology) and, consequently, $m \le n$;
- (3) the induced map $F: \mathbb{C}P^m \to \mathbb{C}P^n$ is harmonic if and only if f is *horizontal* with respect to the Hopf fibrations (i.e., if the differential of f maps $(\ker \pi_*)^{\perp} \subset T(S^{2m+1})$ into $(\ker \pi_*)^{\perp} \subset T(S^{2n+1})$). (This follows from the reduction theorem of Smith [2].)

If, in addition to f being horizontal, F is homothetic then it is minimal [2], and we call $F: \mathbb{C}P^m \to \mathbb{C}P^n$ the polynomial minimal immersion of bidegree (p,q) induced by f. To formulate our main result we recall that a map $F: \mathbb{C}P^m \to \mathbb{C}P^n$ is said to be full if the image of F is not contained in a