On the Coefficients of the Mapping to the Exterior of the Mandelbrot Set

JOHN H. EWING & GLENN SCHOBER

Introduction

The Mandelbrot set M arises in the dynamics of complex quadratic polynomials $q_w(z) = z^2 + w$. It consists of those parameter values w such that the Julia set obtained from q_w is connected. The complement \tilde{M} of M in the Riemann sphere is known [1] to be simply connected and to have mapping radius equal to 1. Thus we may consider the analytic homeomorphism

(1)
$$\psi(z) = z + \sum_{m=0}^{\infty} b_m z^{-m}$$

of $\Delta = \{z : 1 < |z| \le \infty\}$ onto \tilde{M} . It is our purpose to give a useful formula for the coefficients b_m and to show that many of these coefficients are zero. We also determine infinitely many nonzero coefficients, and conclude with a description of the Faber polynomials of the Mandelbrot set. Our work is motivated by an article by Jungreis [2].

Background

Define recursively the polynomials $p_1(w) = w^2 + w$ and

(2)
$$p_n(w) = p_{n-1}(w)^2 + w$$

for n > 1. Evidently, p_n is a monic polynomial of degree 2^n . It is known [2] that the zeros of p_n all lie in M, and so it is possible to define in \tilde{M} a single-valued branch of $p_n(w)^{1/2^n} = w + O(1)$ as $w \to \infty$. In what follows we shall also have use for $p_n^{m/2^n} \equiv [p_n^{1/2^n}]^m$ for positive integers m.

It turns out [2] that the functions $\phi_n = p_n^{1/2^n}$ converge locally uniformly in \tilde{M} to $\phi = \psi^{-1}$, the inverse of the mapping ψ . Near ∞ the functions ϕ_n are one-to-one, and their inverse functions $\psi_n = \phi_n^{-1}$ evidently satisfy

$$(3) p_n(\psi_n(z)) = z^{2^n}.$$

The functions ψ_n are defined in larger and larger subsets of Δ as $n \to \infty$, and converge locally uniformly in Δ to ψ . In fact, the following lemma shows that this convergence is remarkably strong.

Received January 12, 1990.

This work was supported in part by a grant from the National Science Foundation. Michigan Math. J. 37 (1990).