On the BP Homology and Cohomology of $P^{2n} \wedge P^{2m}$

GEORGE NAKOS

1. Statement of Results

Let BP be the Brown-Peterson spectrum associated with the prime 2 and let BP_{*}() and BP*() be the corresponding reduced homology and cohomology theories. Let P^{2n} be the 2n-dimensional real projective space. There is a Künneth short exact sequence due to Landweber [3] for both BP_{*}($P^{2n} \wedge P^{2m}$) and BP*($P^{2n} \wedge P^{2m}$) which is split exact in this case. For instance, for the BP-cohomology one has

(1)
$$BP^*(P^{2n} \wedge P^{2m}) = \Sigma^{-1} \operatorname{Tor}_{BP^*}(BP^*(P^{2n}), BP^*(P^{2m})) \\ \oplus BP^*(P^{2n}) \bigotimes_{BP^*} BP^*(P^{2m}).$$

The tensor product module is well understood. It is the ideal generated by xy in the polynomial algebra $BP^*[x, y]$ modulo the ideal (([2]x)y, x([2]y)), where [2]x denotes the two-series in x. Furthermore, the tensor product has been computed as an abelian group in each degree larger than $2 \max\{m, n\}$ [1; 2]. This computation has led to a strong non-immersion theorem for real projective spaces into Euclidean spaces [2].

Our goal in this note is to compute the Tor groups as BP-modules. We shall prove the following propositions.

PROPOSITION 1. BP^{odd} $(P^{2n} \wedge P^{2m}) = \Sigma^{-1} \operatorname{Tor}_{\mathrm{BP}^*}(\mathrm{BP}^*(P^{2n}), \mathrm{BP}^*(P^{2m}))$ is isomorphic as a BP*-module to a copy of $\Sigma^{2\max\{m,n\}-1}\mathrm{BP}^*(P^{2\min\{m,n\}})$.

PROPOSITION 2. $BP_{odd}(P^{2n} \wedge P^{2m}) = \Sigma^1 \operatorname{Tor}^{BP_*}(BP_*(P^{2n}), BP_*(P^{2m}))$ is isomorphic as a BP_* -module to a copy of $\Sigma^2 BP_*(P^{2\min\{m,n\}})$.

We shall prove Proposition 1 in detail. The dual computation for homology follows the same line of proof and only a brief sketch will be given. As a byproduct of the computation we get all of the v_1 -torsion of the tensor product. Explicitly, we have the following corollary.

COROLLARY 9. The v_1 -torsion submodule of $BP^*(P^{2n}) \otimes_{BP^*} BP^*(P^{2m})$ is the ideal generated by xy(x-y).

Received March 6, 1989. Revision received June 23, 1989.

The author has been partially supported by a Naval Academy Research Center grant. Michigan Math. J. 37 (1990).