On the Integrability of Double Walsh Series with Special Coefficients

F. MÓRICZ,* F. SCHIPP,* & W. R. WADE[†]

1. Introduction

We study the double Walsh series

(1.1)
$$\sum_{j=0}^{\infty} \sum_{k=0}^{\infty} a_{jk} w_j(x) w_k(y),$$

where $\{a_{jk}: j, k=0,1,...\}$ is a null sequence of real numbers; that is,

(1.2)
$$a_{ik} \to 0 \quad \text{as } \max(j, k) \to \infty$$

and $\{w_j(x): j=0,1,...\}$ is the well-known Walsh orthonormal system defined on the interval I=[0,1) and taken in the Paley enumeration (see, e.g., [2]). Thus, series (1.1) is considered on the unit square $I^2=[0,1)\times[0,1)$.

The pointwise convergence of series (1.1) is usually meant in Pringsheim's sense. (See, e.g., [5, vol. 2, ch. 17].) In other words, we form the rectangular partial sums

$$s_{mn}(x, y) = \sum_{j=0}^{m-1} \sum_{k=0}^{n-1} a_{jk} w_j(x) w_k(y) \quad (m, n \ge 1),$$

then let both m and n tend to ∞ , independently of one another, and assign the limit f(x, y) (if it exists) to the series (1.1) as its sum.

Throughout this paper, we shall use the notations

$$\Delta_{10} a_{jk} = a_{jk} - a_{j+1,k}, \qquad \Delta_{01} a_{jk} = a_{jk} - a_{j,k+1},$$

$$\Delta_{11} a_{jk} = a_{jk} - a_{j+1,k} - a_{j,k+1} + a_{j+1,k+1} \quad (j,k \ge 0).$$

We say that $\{a_{jk}\}$ is a monotone decreasing sequence if a_{jk} is monotone decreasing in both j (for each fixed $k \ge 0$) and k (for each fixed $j \ge 0$), or equivalently

(1.3)
$$\Delta_{10} a_{jk} \ge 0$$
 and $\Delta_{01} a_{jk} \ge 0$ $(j, k \ge 0)$

We say that $\{a_{jk}\}$ is a sequence of bounded variation if

Received August 1, 1988. Revision received October 14, 1989.

^{*}This research was completed while these authors were visiting professors at the University of Tennessee, Knoxville, during the academic year 1987/88.

[†]This research supported in part by the National Science Foundation (INT-8620153). Michigan Math. J. 37 (1990).