A Removable Set for Lipschitz Harmonic Functions

NGUYEN XUAN UY

1. Introduction

Let K be a compact set of d-dimensional space \mathbf{R}^d ($d \ge 2$). We denote the class of bounded harmonic functions defined on $\mathbf{R}^d \setminus K$ by $\mathfrak{IC}^{\infty}(K)$ and denote the class of those functions in $\mathfrak{IC}^{\infty}(K)$ that satisfy a Lipschitz condition of order α ($0 < \alpha \le 1$) by $\mathfrak{IC}^{\infty}_{\alpha}(K)$. The following result on the removable singularities of bounded harmonic functions is well known (see [1, Chap. VII] and [6, Chap. III]): Every $f \in \mathfrak{IC}^{\infty}(K)$ is extendable harmonically across K if and only if K has a zero capacity.

Regarding the class of $\mathfrak{F}^{\infty}_{\alpha}(K)$ for $0 < \alpha < 1$, Carleson [1] proved that K is removable if and only if $\Lambda_{d-2+\alpha}(K) = 0$, where $\Lambda_{d-2+\alpha}$ denotes the (d-2+d)-dimensional Hausdorff measure.

The motivation for this paper arises primarily from [7], where the author studied the removable singularities of Lipschitz analytic functions. Our purpose here is to show that there can be a set K with $\Lambda_{d-1}(K) > 0$ even though K is removable for the class $\mathfrak{FC}_1^{\infty}(K)$.

This contrasts with the following analogous result obtained for analytic functions: For all α ($0 < \alpha \le 1$), a compact set $K \subseteq \mathbb{C}$ is removable for the class of bounded analytic functions satisfying a Lipschitz condition of order α if and only if $\Lambda_{1+\alpha}(K) = 0$ (see [2], [7]). Arguments used in this paper are largely based on a related paper by Garnett [4] on removable singularities of bounded analytic functions.

2. A Multi-Dimensional Cantor Set

In this section we define a *d*-dimensional Cantor set K with $\Lambda_{d-1}(K) > 0$. First, we form a linear Cantor set E with ratio $\lambda = 2^{-d/(d-1)}$, using an inductive method as in the construction of the well-known one-third Cantor set. We obtain $E = \bigcap_{n=0}^{\infty} E_n$, where $E_0 = [0,1]$ and E_n (n=0,1,2,...) contains 2^n disjoint intervals of length equal to $2^{-nd/(d-1)}$. Define

$$K_n = \prod_{i=1}^d E_n$$
, $n = 0, 1, 2, ...$, and $K = \bigcap_{n=0}^\infty K_n$.

Received November 11, 1988. Michigan Math. J. 37 (1990).