ON FRACTIONAL DERIVATIVES AND STAR INVARIANT SUBSPACES

William S. Cohn

1. Introduction and statement of main results. Let $\phi(z)$ be an inner function defined on the unit disk $D = \{|z| < 1\}$. Factor ϕ canonically as

$$\phi(z) = \lambda B(z) s_{\sigma}(z),$$

where $|\lambda| = 1$,

$$B(z) = \prod_{k=1}^{\infty} \frac{\overline{a}_k}{|a_k|} \frac{a_k - z}{1 - \overline{a}_k z}$$

is a Blaschke product and

$$s_{\sigma}(z) = \exp\left(-\int_{T} \frac{\zeta + z}{\zeta - z} d\sigma(\zeta)\right)$$

where σ is a positive singular measure on the unit circle T.

In [4] we proved the following result, extending earlier work of Frostman, Riesz, and Ahern and Clark (see [6] and [1]).

THEOREM A. Let $\zeta_0 \in T$, $\phi = Bs_{\sigma}$, and 1 .

(1) Necessary and sufficient that $\lim_{r\to 1} f(r\zeta_0)$ exist for all $f \in K_*(\phi)$ is that

$$\sum_{k} \frac{1-|a_{k}|}{|\zeta_{0}-a_{k}|} + \int_{T} \frac{d\sigma(\zeta)}{|\zeta_{0}-\zeta|} < \infty.$$

(2) Necessary and sufficient that $\lim_{r\to 1} f(r\zeta_0)$ exist for all $f \in K_p(\phi)$ is that

$$\sum_{k} \frac{1-|a_{k}|}{|\zeta_{0}-a_{k}|^{q}} + \int_{T} \frac{d\sigma(\zeta)}{|\zeta_{0}-\zeta|^{q}} < \infty.$$

(Here and in the sequel, by $\lim_{r\to 1} f(r\zeta_0)$ we mean $\lim_{r\to 1^-} f(r\zeta_0)$.)

The spaces $K_p = K_p(\phi)$ and $K_* = K_*(\phi)$ are the "star-invariant" subspaces of H^p and BMOA determined by

$$K_p(\phi) = \phi \bar{H}_0^p \cap H^p$$
 and $K_*(\phi) = K_2(\phi) \cap BMO$,

where $\bar{H}_0^p = \{ \bar{z} \bar{f}(z) : f \in H^p \}.$

Although derivatives are not mentioned in [4] it is not difficult to conjecture (and prove) the correct results for the radial behavior of $f^{(1)}$, $f^{(2)}$, ... if $f \in K_p$ or K_* , and arrive at the following result.

THEOREM A'. Let $\zeta_0 \in T$, $\phi = Bs_\sigma$, 1 and <math>n = 0, 1, 2, ...

(1) Necessary and sufficient that $\lim_{f\to 1} f^{(n)}(r\zeta_0)$ exist for all $f\in K_*$ is that

$$\sum \frac{1-|a_k|}{|\zeta_0-a_k|^{n+1}}+\int_T \frac{d\sigma(\zeta)}{|\zeta_0-\zeta|^{n+1}}<\infty.$$

Received September 17, 1986. Revision received February 5, 1987.

Research supported in part by NSF.

Michigan Math. J. 34 (1987).