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Introduction. Let M be a simply connected complete minimal surface (im-
mersed) in R3. It is classical that M can be parameterized by pairs (f, g) where
f is analytic, g is meromorphic, and the zeros of f occur precisely at the poles of
g, the order of the zero being twice that of the pole. The Weierstrass representa-
tion (cf. [9, p. 63]) of M given in terms of f and g is the parameterization
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The metric and curvature are given by
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An important feature of g is that, after composition with stereographic pro-
jection, it represents the Gauss map of the surface. The universal covering sur-
face of a hyperbolic minimal surface is a simply connected surface conformally
equivalent to the unit disk D, and can therefore be given as above, where the pa-
rameter space is the unit disk. In particular, if the surface itself is simply con-
nected we can and do take f and g as defined in D. The completeness condition
then means that §_ N\ |dz| = o for every path « tending to dD.

A fundamental problem in the theory of complete minimal surfaces is the de-
termination of which meromorphic functions g arise as Gauss maps of these sur-
faces. It is known that if g is holomorphic it cannot be in the Nevanlinna class [6,
pp. 394-5] and that g cannot omit seven points [12]. In the present note we shall
give some further restrictions.

It is perhaps important to point out that in [12], as well as in Theorems 1 and 2
below, an essential ingredient in the proofs is a general result of Yau [13, p. 661]
for complete Riemannian manifolds. It is interesting that, although in the present
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