THE SAMELSON SPACE OF A FIBRATION

John Oprea

Introduction. If G is a compact connected Lie group, then there exists a real
graded vector space Pg such that A(Pg) = H*(G; R), where A denotes the ex-
terior algebra. Moreover, if G acts smoothly on a connected manifold M, then
there is a graded subspace P C P; and an algebra isomorphism A®@ A(P) =
H*(M;R) which makes the following diagram commutative:

A® AP)—> A(Pg)

=1 . l:

H* (M; IR) — H* (G; IR)

The map w* is induced by the orbit map w: G - M, w(g) =g x (for fixed x e M)
and AR A(P) —» A(Pg) denotes projection onto A(P). (See [12, p. 312]).

The action of G on M gives rise to the Borel fibration M - MG — BG, and it is
well known that the orbit map w corresponds to the “transgression” 9: QBG - M
via the homotopy equivalence 2BG = G. The commutative diagram above then
provides an isomorphism Im d* = A(P).

Because these notions are extensions of the classical Lie theoretic approach of
Samelson, we say that P is the Samelson subspace of the action.

It is natural to ask if analogous results hold for arbitrary fibrations ¥ — E - B
and the associated “action” FXQB — F. This question was answered in [16],
where it was shown that F has a rational decomposition F X K with K C QB and
H*(K)=Im(d*: H*(F) - H*(2B)). The space K is called the Samelson space of
the fibration because of the obvious analogy to the classical result stated earlier.
In fact, the classical theorem is simply a special case of the rational decomposi-
tion described above.

The purpose of this paper is to present rational versions of various topological
results within the unifying framework of the Samelson space method. In particu-
lar, we obtain an elementary proof of the Transgression Theorem [3] and a gen-
eralization of the Allday-Halperin inequality [1].

The main result of [16] forms the starting point for this paper, so we recallit in
Section 1. Although minimal model theory was the fundamental tool of [16], it
shall not be emphasized here. It is hoped that, by stating the results of this paper
in customary topological language, a wider audience will be introduced to the
efficacy of the Samelson space technique. Furthermore, with the exception of
some results on rational holonomy [6] and on elliptic spaces ([13]; [4]), all the in-
gredients for the results of this paper were present years ago. It seems only right,
then, to approach this work in the spirit of classical homotopy theory.
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