ON ANALYTIC FUNCTIONS WITH CLUSTER SETS OF FINITE LINEAR MEASURE

Ch. Pommerenke

1. Introduction. Let f be a non-constant complex-valued function defined in the unit disk **D**. The total cluster set C(f) consists of all limit points of f(z) as $|z| \to 1$, $z \in \mathbf{D}$. The linear Hausdorff measure of $E \subset \mathbf{C}$ is defined by

(1.1)
$$\Lambda(E) = \lim_{\epsilon \to 0} \inf_{(D_n)} \sum_{n} \operatorname{diam} D_n$$

where the infimum is taken over all systems (D_n) of disks with diam $D_n < \epsilon$ that cover E.

THEOREM. If f is bounded and analytic in **D** and if

$$\Lambda(C(f)) < \infty,$$

then f has a continuous extension to $\bar{\mathbf{D}}$.

This result was proved by Globevnik and Stout [4, Theorem 2] under the additional assumption that

$$(1.3) \qquad \qquad \iint_{\mathbf{D}} |f'(z)|^2 \, dx \, dy < \infty,$$

and they conjectured that (1.3) is redundant. They applied their result to study proper analytic maps of **D** into the unit ball of \mathbb{C}^N ; see [2] and [3] for related results. I want to thank Professor Globevnik for writing to me about this problem.

Note that (1.2) and (1.3) do not imply ([4], [5]) that f' belongs to the Hardy space H^1 . See [5] for further results that follow from (1.2).

2. Auxiliary results. In the following lemma, it is probably possible to replace the factor π by 2.

LEMMA 1. If B is a continuum with $\Lambda(B) < \infty$ and if V_j are the bounded components of $\mathbb{C} \setminus B$, then

(2.1)
$$\sum_{j} \Lambda(\partial V_{j}) \leq \pi \Lambda(B).$$

Proof. In each component V_j we fix a point w_j . By (1.1) the compact set B can be covered by finitely many disks $D_{n\mu}$ ($\mu = 1, ..., m_n$) such that

(2.2)
$$\sum_{n=1}^{m_n} \operatorname{diam} D_{n\mu} < \Lambda(B) + \frac{1}{n} \quad \text{for } n = 1, 2, ...,$$

Received January 23, 1986.

Michigan Math. J. 34 (1987).